Variations of Augmented Lagrangian for
Robotic Multi-Contact Simulation

Jeongmin Lee, Minji Lee, Sunkyung Park, Jinhee Yun, and Dongjun Lee

Abstract—The multi-contact nonlinear complementarity prob-
lem (NCP) is a naturally arising challenge in robotic simulations.
Achieving high performance in terms of both accuracy and effi-
ciency remains a significant challenge, particularly in scenarios
involving intensive contacts and stiff interactions. In this article,
we introduce a new class of multi-contact NCP solvers based
on the theory of the Augmented Lagrangian (AL). We detail
how the standard derivation of AL in convex optimization can
be adapted to handle multi-contact NCP through the iteration
of surrogate problem solutions and the subsequent update of
primal-dual variables. Specifically, we present two tailored vari-
ations of AL for robotic simulations: the Cascaded Newton-
based Augmented Lagrangian (CANAL) and the Subsystem-
based Alternating Direction Method of Multipliers (SubADMM).
We demonstrate how CANAL can manage multi-contact NCP
in an accurate and robust manner, while SubADMM offers
superior computational speed, scalability, and parallelizability
for high degrees-of-freedom multibody systems with numerous
contacts. Our results showcase the effectiveness of the proposed
solver framework, illustrating its advantages in various robotic
manipulation scenarios.

Index Terms—Contact modeling, simulation and animation,
dynamics, dexterous manipulation

I. INTRODUCTION

Hysics simulation is a fundamental tool for the develop-

ment of robotic intelligence, as it enables scalable data
acquisition, training, and safe testing of various algorithms
and designs. Moreover, simulations can be directly employed
to solve modeled system dynamics, proving invaluable for
a range of applications such as global planning, trajectory
optimization, and parameter estimation. This significance has
led to the development of diverse open-source platforms [1]-
[6], which are increasingly being utilized in various research
endeavors.

An essential focus in robotic simulation research revolves
around achieving results that are both accurate and efficient
in terms of memory and computation time. This presents a
comprehensive and challenging problem, encompassing di-
verse considerations such as discrete-time integration, defining
various geometric/physical constraints, incorporating friction,
managing system-induced sparsity, and selecting numerical
algorithms. Among these factors, multi-contact plays a crucial
role in mimicking interactions between objects. A prevalent
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Fig. 1. Snapshots of a robotic simulation using our multi-contact solver. Top:
bolt-nut assembly. Bottom: dish piling. Although intensive contact formation
and stiff interactions make these scenarios challenging to simulate, our solvers
successfully complete the simulations less than a ms of time budget per step.

velocity-level modeling of such constraints [7] naturally in-
duces a nonlinear complementarity problem (NCP), which is
generally challenging to solve.

Typically, contact solvers for physics simulations must bal-
ance three crucial factors: efficiency, accuracy, and robustness.
However, finding a universal solution remains challenging.
Methods developed for graphics and game engines tend to
prioritize efficiency and robustness, aiming to deliver visually
plausible results, even if early termination occurs. However,
they are known to converge slowly and may struggle with
achieving highly accurate solutions. They frequently encounter
difficulties in handling intensive contact interactions (i.e.,
where constraints are dense and numerous relative to the
system degrees of freedom), which is common in robotic
manipulation. Conversely, achieving a highly accurate solution
for NCP often involves complex matrix operations and nu-
merically sensitive processes, which generally lack efficiency
and robustness for practical robotic applications. Moreover,
some approaches aim to enhance efficiency and robustness by
relaxing the contact constraints and exploiting them during the
solving stage. However, such relaxations can be challenging
to physically interpret, and the solutions they produce may
exhibit undesirable physical behaviors.

In this article, we introduce a new series of multi-contact
solvers for robotic simulation based on the theory of aug-
mented Lagrangian (AL). We demonstrate how the variations
of AL can address the multi-contact NCP for robotic sim-



ulations, by iteratively solving surrogate problems, thereby
enabling the proximal solution converges in a stable and
robust manner. Specifically, we present two algorithms that
are practically applicable to robotic simulation: the cascaded
Newton-based Augmented Lagrangian method (CANAL) and
the subsystem-based Alternating Direction Method of Mul-
tipliers (SubADMM). We explain how these two variations
are advantageous in scenarios requiring precise management
of high-density intensive contact and parallelized, scalable
handling of high degree of freedom (DOF) multibody contact,
respectively. Several robotic simulations, particularly those in-
volving challenging multi-contact scenarios, are implemented
and demonstrated to validate our framework.

The rest of the article is structured as follows. In Sec. II
we review the development and utilization of multi-contact
solvers in robotic applications and beyond. Sec. III provides
essential background materials necessary to present our AL-
based multi-contact solver. Then, Sec. IV presents our core
theories and structures for the AL-based multi-contact solver.
This leads to Sec. V, which outlines the first practical variation
as the cascaded Newton-based AL, and Sec. VI, which intro-
duces the other variation: subsystem-based ADMM. Sec. VII
illustrates the implementation results of our solver in physics
simulation and evaluates its performance under various robotic
manipulation scenarios. Finally, Sec. VIII conclude the article
with discussions and remarks.

II. RELATED WORKS

In this section, we summarize the multi-contact modeling
and solver algorithms that have been utilized in robotic sim-
ulation. See also Table I for the comparison of widely used
simulators in robotics.

A. Direct Method

The conventional approach to handling dynamics equa-
tions with multi-contact constraints involves formulating the
equations as a linear complementarity problem (LCP) [§]
then applying Lemke’s algorithms [9] or Dantzig’s pivoting
algorithms. While these direct methods can guarantee accu-
racy, they often suffer from high computational complexity.
Moreover, the LCP-based formulation necessitates polygo-
nal friction cone approximation, leading to undesirable error
in friction behavior. In robotic simulation software, DART
[10], ODE [11], and Bullet [1] provide implementations of
Dantzig’s method to solve the LCP problem.

B. Per-Contact Iteration

More widely used in recent years are iterative methods,
which typically involve locally performing an impulse pro-
jection step to achieve global equilibrium. One of the most
popular iteration schemes is projected Gauss-Seidel (PGS),
which has been extensively developed and adopted in the
game and graphics community [12], [13] as well as in robotics
[14], [15]. These methods are known for being simple, robust,
and advantageous in generating visually plausible results.
However, they often experience slow convergence and limited

TABLE 1
COMPARISON OF CONTACT MODELS AND SOLVERS USED IN POPULAR
ROBOTIC SIMULATORS.

‘ ‘ Bullet ‘ MuJoCo | DART ‘ PhysX ‘ Drake ‘ ODE ‘

Model LCP Convex LCP NCP Convex LCP
Sol Direct Ne(\:th;on Direct PGS Newt Direct
OWer | pGs PGS PGS | TGS ewton | pgs

efficiency, especially when the constraints are highly cou-
pled. These weaknesses are particularly emphasized in robotic
simulation, as the generalized coordinate representation (e.g.,
robot joint angles) is common, and over-specified contact (i.e.,
system DOF < constraint DOF) is prevalent in manipulation
tasks. Several research efforts have aimed to enhance the per-
formance of impulse iteration methods. In [16], the bisection
method is presented as a potential replacement for the local
projection scheme in PGS, demonstrating its effectiveness in
quadruped locomotion simulation. Additionally, a substepping
variant of PGS, named temporal Gauss-Seidel (TGS), is in-
troduced in [17], showing its better convergence in various
situations. Unlike direct methods, iterative methods can be
applied to various types of problem modeling, including LCP,
cone complementarity problems (CCP), nonlinear complemen-
tarity problems (NCP), and also their position-based dynamics
(PBD) variants [18]. As a result, they are employed in a wide
range of simulation software, including Bullet [1], MuJoCo
[2], RaiSim [5], and Isaac Sim [19].

C. Nonlinear Equation

Another approach to dealing with multi-contact simulation
is to express all required relations in nonlinear equation
form and solve them using gradient descent iteration. Implicit
penalty-based contact, often referred to as regularized contact,
exhibits the most natural connection to this approach, as
demonstrated in [20], [21]. However, penalty methods have
well-known weaknesses that they often necessitate parameter
tuning to achieve plausible results, and high penalty gains
can lead to numerical issues. For the other direction, in
[22] construct and solve a nonlinear equation with com-
plementarity smoothing, and [23] we derived a nonsmooth
equation using the complementarity function (e.g., Fischer-
Burmeister). While these methods typically exhibit superlinear
convergence, the intricate nature of contact conditions fre-
quently leads to lack of robustness or challenges in line search.
Addressing this issue, the Newton-based techniques [24] and
conjugate gradient (CG) algorithm for regularized convex
contact models aim to ensure algorithmic robustness, albeit
at the potential expense of physical accuracy. Among current
simulation software, MuJoCo and Drake [25] are incorporating
nonlinear equation-based solvers.

D. Augmented Lagrangian

Proximal algorithms, which were possibly pioneered by
Moreau [26] comprise a class of methods designed to address
constrained convex optimization problems by sequentially



solving a series of subproblems. The augmented Lagrangian
(AL) method can be viewed as a class of proximal algo-
rithm [27], as it formulates subproblems using the method
of multipliers and a penalty term. Typically, the subproblems
are addressed through simpler solutions or tailored designs,
which has spurred the development of numerous open-source
libraries that implement these strategies, thereby facilitating
broader access to robust optimization tools. Notable examples
include libraries for quadratic programming, such as OSQP
[28] and QPALM [29], and for cone programming, such
as SCS [30]. In robotics, proximal algorithms have been
effectively utilized to address constraints within computational
structures, notably in applications such as factor graph opti-
mization [31] and differentiable dynamics programming [32].
The utility in solving robot dynamics with equality constraints
is presented in [33]. Our previous work [34] presents a specific
algorithm based on the Augmented Lagrangian (AL) method
to achieve effective parallelization in contact simulations.
Building upon this foundation, this article extends the gen-
eral theory and variations of AL designed to handle robotic
simulations involving contact.

III. PRELIMINARY
A. Discretized Dynamics

We consider following continuous-time equations of mo-
tion:

M(q)i = f(g,d) + J(q)" A (1)

where ¢ € R™ is the generalized coordinate variable of
system, M (q) € R"*" is the system mass matrix, f € R™ is
the generalized force (including Coriolis/gravitational force,
external input, etc.) and A € R", J(q) € R™*™ are the
constraint impulse and Jacobian with n,n. being the sys-
tem/constraint dimension. In typical robotic simulation, the
discretized version of the equation (1) is employed:

My (vps1 — vg) = fute + JE Ak
Ok = Ovg + (1 — O)vgs 2)
qr+1 < update(q, U, tx)

where k denotes the time step index, t; is the step size, and
the vy is the generalized velocity at the k-th step. In this
work, we primarily integrate explicit and implicit schemes.
Specifically, we utilize M = M(qx) and fi = f(qk,vk),
while employing the representative mid-step velocity 0, € R™
for state updates and constraint handling. Here, 6 € [0, 1]
determines the precise integration rule, while its impact on
physical behavior is discussed in [35]. From now on, time
step index k will be omitted for simplicity but note that all
components are still time(step)-varying.

B. Constraint Models

Throughout this article, we classify the constraints on the
multibody system into three categories: soft, hard, and contact
constraints. Similar to many other simulators [1], [2], [5], the
constraint model can be formulated by relation between the
velocity © to the impulse A. Such velocity-impulse modeling
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Fig. 2. Three cases resulting from the Signorini-Coulomb condition, ranging
from open (A; 5, = 0), stick (A, > 0,6; = 0), to slip (A\s,, > 0,0; > 0),
shown from left to right. The blue shape illustrates the friction cone, the green
arrow indicates the contact frame velocity, and the yellow arrow represents
the contact impulse.

has advantages in terms of the well-definedness of the problem
(c.f., the Painleve paradox [36]) and can naturally express
behaviors like friction or elastic collisions. However, it may
exhibit position-level drift, as it is based on linearization on
the constraints. Positional drift can be suppressed by adopting
techniques such as multiple linearization, as in [37], or re-
linearization [38], during the solution process. These methods
may be considered for future implementation.

1) Hard Constraint: Hard constraints ensure that equations
and inequalities for the system are strictly satisfied (e.g., joint
limit), including holonomic and non-holonomic types. If the
i-th constraint is hard, the corresponding relation is

0< XA LJiv+e >0 3)

where ¢; € R and J; € R'*™ denote the error and Jacobian for
hard constraint. Here, the error e; is typically scaled and biased
value, from the methods such as Baumgarte stabilization [39],
to prevent the constraint drift effectively.

2) Soft Constraint: Soft constraints are typically originated
from the elastic potential energy of the system (e.g., spring).
If the ¢-th constraint is soft, constraint impulse can be written
as

where e; € R and J; € R " are the error and Jacobian for
soft constraint, k;, b; > 0 are the gain and damping parameter
which are scaled and biased dependent on the time integration
scheme, step size, and constraint-space damping. The values
of k; and b; are associated with the system energy behavior,
see [35], [40] for more details.

3) Contact Constraint: Contact condition is typically the
most demanding type since it includes nonlinear complemen-
tarity relation between primal (i.e., velocity) and dual (i.e.,
impulse) variables. In this article, we assume that at each
time step, set of contact features (i.e., gap, contact point, nor-
mal) are provided from collision detection module [41], [42].
Then for each contact point, we define Signorini-Coulomb
condition (SCC), which is the most universal expression for
dry frictional contact. If the i-th constraint is contact, the
corresponding 3-DOF relation is

0< )\i,n il Ji,n@ +€ein >0
0<8; L pidin — || Nie] >0 (5)
OiXit + HiXindi 0 =0



where L denotes complementarity, e; , € R and J; ,, € RIxn
denote the error and Jacobian for contact normal, J; ; € R2x7
is the Jacobian for contact tangential, and u, is the friction
coefficient and §; is the auxiliary variable. The first condition,
known as the velocity-level Signorini condition, captures the
complementarity nature of the contact occurence and gap. The
remaining conditions involve the complementarity between
slipping velocity and the friction cone boundary, with the max-
imal dissipation law indicating that slip opposes the direction
of impulse. There are three situations induced by the condition
(5) - open, stick, and slip, as depicted in Fig. 2.

C. Augmented Lagrangian Method

By standard, augmented Lagrangian (AL) method is a class
of algorithms to solve the following constrained optimization
problem:

min f(z) + g(z) st. Pr+Qz=r.
Here, the augmented Lagrangian is defined as,
L= (@) + () + " (Pr+Qz 1)+ 2| Pa @z — 1

where u is the Lagrange multiplier and 8 > 0 is the penalty
weight. Then AL method takes the iteration step as

(21 2 = argmin £(z, 2, u')
x,z (6)
Wt = ol 4 (P 4 QA — )

where [ is the iteration index. In the above (6), (z,z) are
coupled for minimization problem at each step. Meanwhile,
Alternating direction method of multiplier (ADMM [43])
iteratively performs alternating minimization of £ with respect
to each variable. The iteration process of ADMM can be
summarized as follow:
= argmin £(z, 2¢, u!)
x

I+

2 = argmin £(z! !
z

,z,ul) )
ul+1 _ Ul +/@(le+1 + Qzl+1 _ T)

where [ is the loop index. By independently resolving each
variable, ADMM is often employed to enhance the efficiency
and scalability of the application [43], [44]. In this work, we
develop separate tailored algorithms based on the styles of (6)
and (7).

IV. MULTI-CONTACT SIMULATION VIA AUGMENTED
LAGRANGIAN

A. Problem Formulation

The motivation for leveraging AL in contact simulation
primarily stems from the insight to integrate tools from con-
strained optimization into the solving of constrained dynamics
equation. The problem considered in this article, can be
essentially formulated as

Solve Ao =b+ JTA

s.t. (Jo,N) €S, ®

where A € R" ™ b € R™ are the dynamics matrix/vector
compressed from (2), and S, represent the set that satisfies
the relation between Jo and A described in (3), (4), and (5).
In robotic manipulation scenarios, contact points are often
generated numerously and densely, which can lead to the
resulting problem being ill-conditioned or infeasibly defined.
In such cases, performing per-contact iteration based on the
dual conversion JA™'JT (i.e., so-called Delassus operator)
often proves inefficient and exhibits slow convergence. Mean-
while, AL in optimization is known for maintaining subprob-
lem feasibility and demonstrating robust convergence, even
converging to solutions with the least constraint violation in
poorly defined problems [45].

Consequently, our primary objective is to investigate
whether the advantages of the AL approach can be effectively
applied to contact simulation. Although the problem (8) shares
commonalities with optimization, it diverges due to the intro-
duction of complementarity relations between primal and dual
variables, particuarly associated with contact conditions. Our
aim is to establish a foundation for deriving AL techniques
specifically tailored to multi-contact, thereby addressing the
unique challenges posed in robotic simulation.

B. AL for Multi-Contact NCP
In this subsection, we will derive augmented Lagrangian
(AL) based methods to address multi-contact NCP in simula-
tion. We start by equivalently expressing (8) as follows:
Solve Ad = b+ J'A
st (z,N) eS8, Jo==z
where z € R™ serves as the slack variable for the constraint

interface. The expression in (9) bears resemblance to the
optimality condition of the following optimization problem:

(€))

1
min —97 A0 — b7 + g(2) subject to JO = 2z

0,z

(10)

as the matrix A is always symmetric positive definite. In
this context, g serves to enforce the constraint in dynamics,
although (z, ) € S, is not integrable into the function if the
multi-contact condition included. Recalling the structure of (6)
applicable to the optimization problem (10), we can similarly
solve (9) as follows:

A+BJTT BJT} H B [b JTu:|
—BJ BI zl | u+ A (11)
st (z,A) €S,
u < u+ B(Jo— 2).

Solve

(12)

The rationale of the above structure is that, at the fixed-
point of the iteration (therefore, Jo = z), the result satisfies
both dynamics equation and constraint relation. Similar to (6),
the process can be interpreted as iterating between solving the
problem relaxed via a penalty term and updating the Lagrange
multipliers. We refer this relaxed problem (11) as the surrogate
problem. However, unlike the minimization problem in (6), the
solvability of the surrogate problem remains unclear, which
may raise potential concerns. We address this issue in the
following proposition.



Proposition 1: Surrogate problem (11) always has a feasi-
ble solution.

Proof: The proof can be done by borrowing the existence
proof from [36] based on the Brouwer fixed-point theorem,
which states that a solution to the Coulomb friction problem
always exists if the rows of the contact Jacobian are linearly
independent. Due to the slack variable z, the contact Jacobian
in (11) can be simply considered as an identity matrix,
satisfying this condition. ]

Given that the surrogate problem (11) has a feasible solu-
tion, the numerical scheme used to find this solution becomes
significant as its performance directly affects the overall ef-
ficiency and accuracy of the AL methods for multi-contact
NCP.

C. Closed-Form Formulation of Slack Variables

Compared to the original problem (8), the surrogate problem
(11) should be easier to solve in order to maintain the
rationality of the framework. A crucial difference between (8)
and (11) is that the constraint condition is defined on the slack
variable z as shown below:

Bz=pBJo+u+ A st (z,\)€S.. (13)

This implies that the relationship between z and A is matrix-
free and involves only a simple scalar weight 5. Based on
this feature, we can derive the closed-form representation for
A (therefore, also for z) with respect to © for each hard, soft,
and contact constraint. The derivations are listed as below.

If the i-th constraint is hard, we can determine \; by
substituting (13) into the complementarity relation (3):

Ai = > (=BJi0 — u; — Be;) (14)

where II>( denotes the projection on positive set. Meanwhile
if the ¢-th constraint is soft, we can determine \; by substi-
tuting (13) into the linear relation (4):

A= —
bi +

Finally, if the ¢-th constraint represents a contact, we can
determine \; by substituting (13) into the contact condition
described in (5):

Ai = T (= BJib — u; — fBe;)

(15)

(16)

where Il¢ denotes the projection onto the friction cone C.
Specifically, the projection \; = IIF"™ (X\}) is carried out by
the following steps:

Xi,n = max(A],,,0)

Aie = e (Al

Here, C(); ) represents the cross-section of C where the
plane at height ); ,, intersects the cone. This nested projection
is distinct from the closest distance projection, commonly
known as the proximal operator when applied to the indicator
function of the friction cone [27]. See Fig. 3 for illustrations
of each projection scheme. As in [46], we refer to (17) as
the strict operator as the resulting (z;, A;) strictly satisfies the

7)

¥

~
/' e /' e
Fig. 3. Comparison of the strict operator (left) and the proximal operator

(right) for the friction cone projection. Black dot: operator input; red arrow:
projection direction.

Signorini-Coulomb condition. This property is demonstrated
in the proposition below.
Proposition 2: If the i-th constraint represents a contact,
(16) with (17) gives the unique solution of (13).
Proof: As the normal component is completely decoupled
from the tangential component in (13), it can be written as

ﬂ(zi,n + ei,n) = /\i,n + ﬁ*]zn@ + Uin + ﬂei,n
= )\i,n - )‘:,n

Then, if A7, > 0, A\;, = Aj, is the only solution for
which z;,, + e;,, = 0 is satisfied. Otherwise, if \; , = 0,
it is the only solution since z;, + e;, > 0. Therefore, the
normal components are uniquely determined, satisfying the
complementarity condition. For the tangential components, the
relation can be written as

ﬁzi,t = /\i,t - )\;t
Substituting the above equation into (5), we obtain
(Boi + pidin) it = piXin iy

If A\;; lies inside C(A;n), pAin — || Aitll > 0 holds and ¢;
should be 0. If \;, lies outside C()\; ), d; should be larger
than 0, yet should satisfy pA;, = ||\ ||, therefore it is
uniquely determined. Finally, the resulting A;; is equivalent
to the result of the strict operator, thus the statement holds. B

The results (14), (15), and (16) derived above imply that
A; can be expressed as a closed-form regardless of constraint
type, allowing us to write it as:

Ai =T(A]) where A =—FJ;0—u; — PBe; (13)

where T is a closed-form operator which is continuous yet may
nonsmooth depending on the constraint type. Accordingly, by
the linear relation (13), the slack variable z is also expressed
in closed-form with respect to 9.

Based on the closed-form operation (18), solving (11) can
be now expressed as solving following nonlinear equation:

r(6) = Adv—b—>_ JIN

19
=Ab—b— > JIT(=BJid — u; — Be;) (19

then computing z = Jo + %(u + ) accordingly. Due to the
projection operator (17), r : R™ — R"™ is a continuous, yet
semismooth equation. Therefore, one can handle the surrogate
problem by solving this nonlinear equation (19) using the



Newton method, whose theories developed under semismooth
case [47] by employing the generalized derivatives.

However, typical (semismooth) Newton methods are known
to exhibit superlinear convergence near the solution but lack
robustness. Although the Prop. 1 ensures the existence of
solution and we attempt with various globalization techniques
based on backtracking/edge-aware line-search and trust-region
methods, we found that none provided sufficient robustness.
This is critical considering that in physics simulation, as
numerous iterations are required at each time step, and even
a single failure can lead to significant consequences. Further-
more, the derivative of the closed-form operator (18) might
become non-symmetric in contact cases, and cannot guarantee
that % will always be non-singular. This issue makes the
computation both expensive and unreliable. Consequently, we
have developed two variations of the augmented Lagrangian
tailored for the multi-contact NCP form (9): the cascaded
Newton-based augmented Lagrangian method (CANAL) and
the subsystem-based ADMM (SubADMM), which are pre-
sented in the following sections.

V. CASCADED NEWTON-BASED AUGMENTED
LAGRANGIAN

A. Cascaded Structure

A crucial issue of the Newton-based solution of (19) is that
the landscape of the merit function % ||r(9)|/? is non-convex.
Our core strategy to address this issue employs a cascaded
method that relaxes each surrogate problem into a convex
form, facilitating fast and stable solutions, while updating
terms at each AL step to compensate for discrepancies between
the convex problem and the original NCP. For the convex
relation, we utilize the equivalence of (z,)\) € S, and (5)
with the following condition:

0

Hi

N————
Ppi

ec” (20)

where C* denotes the dual cone of C. This equivalence can be
easily verified, as we refer [36] for details. The reformulated
relation in (20) essentially constitutes a cone complementarity
condition, if the perturbation term p; is excluded.

A key idea of our cascaded Newton approach is to substitute
the perturbation term p; by borrowing z; from the previous AL
iteration. In other words, we treat p; as a constant in every
surrogate problem, and temporarily consider the relationship
between z; and \; as a cone complementarity condition.
Consequently, in the (I + 1)-th AL iteration, we solve the
following nonlinear equation that replaces the strict operator
(16) with the proximal operator:

,,,(,[}H-l) — Ad I+1 —bh— ZJT)\H-l

A = 2 (—BJ; vl+1 ul — pél) 2h

X

i

where &, = ¢; +pl =€, + [00 ui||zf,tH]T. Even after this
replacement, the nonlinear equation in (21) remains semis-
mooth. However, we can demonstrate that it is integrable, as
detailed in the following proposition. Note that to streamline
the explanation, we will focus exclusively on the contact
constraints below, as the other types (i.e., hard and soft) follow
straightforwardly.

Proposition 3: The function r(9) from (21) is the derivative
of the following strongly-convex function:

5T AD — b7+

. z

Proof: The derivative of h(?) can be expressed as:

h(t) = B (22)

dh(o) _ -
do _b_z 1d/\* Ai

:Av—b—ZJZ-TAi

The latter equality holds due to the identity A7 (A\;—\}) = 0 in
the proximal operator. The symmetric positive-definite prop-
erty of A ensures that the quadratic term is strongly convex.
Furthermore, since the squared distance to a convex set is
2 is convex with respect to A7, and thus also for
9. Therefore, h(?) is a strongly-convex function. [ ]

This result is closely related to those presented in [14], [24],
although the objective function is defined differently based on
our AL-based formulation. Given this property, we can apply
the exact Newton method to the strongly-convex function (22)
by computing the derivative of r(9) (i.e., the Hessian), which
is proven to exhibit global convergence [48].

B. Newton Step

Computing the derivative of r(?0) in (21) with respect to © is
straightforward, except for the part involving 7'. As the opera-
tor 7" is a proximal operator on a friction cone (see Fig. 3), it
involves a continuous concatenation of three formulaic forms,
yet the function is semismooth at the connection points. Below,
we provide derivative of each form which can be obtained from
a few algebraic calculation:

O3x3, open
d/\i 13><3, stick
Ty X0 oy 3T
d)\Z H21-_1 /’l’l ‘[2><2 + H)\*fH P(A’L,t) M‘Z)\Z,t , Sllp
fiXi g 1
(23)

where A7, is the normalized vector of Al roand P(Aiy) =1—
Nit /\M is the tangential projection matrix. Then the derivative
can be written as
dr(v)
do

=A+ Z B! Z? Ji. (24)

(3

Due to the structure given in (23), and consequently the matrix
(24), is guaranteed to be symmetric positive definite, therefore



always invertible. Followingly, the direction of the Newton
step is computed as

(o) = — <d;(g’)>1 ()

where the d(v0) denotes the direction of ¥ update.

Computation of the step (25) requires the linear solving
of (24), therefore assemble and factorization of the matrix is
necessary. For better efficiency, we can exploit sparsity pattern
of the inertia matrix and the constraint Jacobian during the
process.

(25)

C. Exact Line-Search

Drawing from well-known convex optimization theory [48],
we can guarantee that (25) provides a descent direction. How-
ever, we still need to integrate a suitable line-search scheme
to ensure global convergence. Here, the line-search problem
can be described as following one-dimensional, strictly convex
optimization problem:

IOEI>1{)1 f(0+ ad(D)). (26)
Similar to [24], we can find a globally optimal solution of the
problem (26) using the rtsafe algorithm, which effectively
combines the one-dimensional Newton-Raphson method and
a bisection scheme. In practice, we find that the Newton step,
when combined with the aforementioned exact line-search,
performs robustly even with large values of 3. This approach
significantly enhances the robustness of the simulator, as the
standard semismooth Newton method on (19) often leads to
failures, especially for large 5. The effectiveness is attributable
to the integration of our cascaded scheme and the well-
established theories in convex optimization literature.

D. Warm-Start and Penalty Parameter Update

At each Newton loop, we can warm-start © from the value
of the previous CANAL loop. This effectively reduces the
number of necessary Newton steps in practice, as the optimal
solution of the inner convex optimization should be similar as
the AL iteration converges. Typically, with warm starting, we
find that one or two Newton iterations often suffice after some
progress has been made in the CANAL iteration. Therefore,
the computational cost per iteration step tends to decrease. For
the first iteration, we can warm-start ¥ and u (and therefore
also z) by using the values from the previous time step.

The penalty parameter /3 plays a crucial role in the CANAL
algorithm. Typically, a high value of 8 improves the conver-
gence of the residual || J0 — z|| to zero. However, it also makes
the convex problem numerically stiff, thus requiring additional
Newton iterations to solve. Consequently, we begin with a
moderate value of 3 (10* in our cases) and increase it if the
residual value is not sufficiently reduced. The update rule for
increasing [ is defined as follows:

B = min(xf3, M),

where x > 1 is the hyperparameter. This rule includes restric-
tion of 8 from becoming unnecessarily large, thus bounding

27)

Algorithm 1: Multi-Contact Simulation via CANAL

1 while simulation do

2 | initialize [ = 0,9°,2°,8 >0,k >1,0<n < 1
3 while CANAL loop do

4 initialize ' «+ &'

5 compute ¢ based on 2!

6 while Newton loop do

7 compute 7(9!+1) (21)

8 if |r(d'+1)]| < 0 then

9 | break

10 end

1 compute Newton step d(9'*1) (25)
12 compute « via exact line-search (26)
13 L M+ ad(otY)

14 end

15 update z'*! and multiplier »!** (12)

16 if |Jolt — 21| < 04L then

17 | break

18 else

19 if | Jo!T — 2| > (|| Jo! — 2 then
20 | update 3 (27)

21 end

22 end

23 l—1+1

24 end

25 update system state using 0!t
26 end

the stiffness of (27) to circumvent numerical instability. Note
that, if we perform only a single iteration on CANAL, it is
equivalent to solving a soft convex formulation of contact as
in [2], [25]. In this regard, CANAL can be considered as their
extension, refining approximations and converging to near-
rigid behavior through the update of primal-dual variables. In
practice, we find that it takes only a few iterations to achieve
plausible behavior in simulations, and after several iterations,
it tends to converge to very high accuracy. The overall CANAL
algorithm is summarized in Alg. 1.

VI. SUBSYSTEM-BASED ALTERNATING DIRECTION
METHOD OF MULTIPLIER

While the CANAL-based multi-contact simulation de-
scribed in Sec. V exhibits fast convergence and stable con-
straint handling in practice, its scalability may be limited by
the need to compute at least one Newton step for each AL
iteration. Although we fully exploit the sparsity pattern, the
Hessian matrix may become fully dense in the worst-case sce-
narios (e.g., long kinematic chains, dense coupling), thereby
significantly increasing the complexity of the factorization pro-
cess. Consequently, this approach can become computationally
expensive when dealing with large-DOF multibody systems
that include numerous objects.

One reasonable option in this regard is to adopt the method-
ology of ADMM, which, instead of solving the coupled
problem of (9, z), performs alternating computation for each
© and z. By employing this alternating approach, the problem



Fig. 4. Ilustrative example demonstrating division and slack variable
definition in SubADMM. Left: A multibody system with contacts comprising
4 subsystems, including 1 articulated body (robot) and 3 rigid bodies. Right:
Corresponding graphical representation.

can be decomposed into a closed-form operator for z from
(18) and a linear problem for v from (11):

(A+BJT N =b+ JV(Bz — u) (28)

Although this vanilla ADMM allows matrix factorization to
be performed only once for each time step, its computational
efficiency diminishes with increasing system size, and also
the sparsity pattern of the matrix in (28) is same with the
Hessian matrices used in CANAL. Additionally, in practice,
ADMM often necessitates tuning of the parameter 5 during
iterations to achieve optimal performance, which may require
re-factorization of the matrix. Hence, we introduce a novel
algorithm termed subsystem-based ADMM (SubADMM), de-
signed to offer enhanced scalability with parallelization capa-
bilities.

A. Subsystem-Based Reformulation

In our robotic simulation, we assume that the multibody
system is composed of a kinematic chain [49], where each
body is connected to its parent body via various types of
joints (fixed, floating, revolute, prismatic, etc.). We then define
the notion of a subsystem as a single subtree rooted at the
ground. For example, a single floating rigid body or a single
robot (each of robotic arm, humanoid, etc.) is regarded as a
subsystem.

To better leverage the subsystem structure, we adopt a vari-
ations on the definition of augmented Lagrangian compared to
the one described in Sec. IV. We first rewrite the multi-contact
simulation problem (8) as follows:

Aj{’j:bjﬂLZJg)\i Vje{l,--- N}
' (29)
s.t. (‘72'7)\1') €8.; Vie{l,--- ,M}

where M is the number of constraint, /N is the number
of subsystem, and V; is the subset of {01, ,0n} that
contributes to the ¢-th constraint. Here, J;; are defined only for
(i,7) such that ©; € V;. Note that our reformulation does not
rely on any assumptions about the system. In the unconstrained
case, the dynamics of each subsystem are readily decoupled
(thus A;©0 = b; Vj). The coupling between subsystems is
modeled by constraint forces as described in (29), which
include both intra- and inter-subsystem interactions.

In robotic systems, constraints are applied either intra- or
inter-bodies (e.g., contacts, tendons) or to joints (e.g., limits,
controls). Based on this insight, we also reformulate the

structure of the Jacobian. To illustrate the idea, let us consider
the example in Fig. 4. In this example, the Jacobian for the
first constraint (contact between the 5-th and 7-th bodies) can
be written as follows:

Ji= [JibsIbst J1,0Jbr 2]

where Jj, , maps the joint space to the body space, and J, ,
maps the body space to the constraint space. In this case,
Jacobian for each subsystem is naturally defined as follows:

Jin = JipsJos1 Jiz = J1p,Jbs 2 (30)

Meanwhile, in the case of an inter-subsystem constraint, such
as the 5-th constraint in Fig. 4, acting internally on the first
subsystem, we express the Jacobian as:

J = ’ i1 31
51 |:J5,b3=]b3,1] (€29)
which splits the original Jacobian Js p,Jp, 1 + J5.b5 55,1 and
stack it row-wise!. This reformulation is similarly applied
for the constraints to joints. Below, we describe how this
reformulation can lead to an efficient ADMM process.

B. ADMM for the Reformulation

Based on the reformulation described in Sec. VI-A, we
define slack variable to equivalently express the problem
similar to (9):

Aoy =bj+ Y JEN Vje{l,-- N}
i (32)
S.t. (ZZ,Aq) S Sc,iv Zij = Jij’[)j Vi € {1, cee ,M}

where Z; is the set of slack variables z;; such that (7,7)
satisfies 9; € Vi. Fig. 4 gives an example of how z;;
are defined under the subsystem-based structure. Then from
the augmented Lagrangian structure described in Sec. IV,
surrogate problem for the reformulation (32) can be formulated
as follows:

(Aj T ZﬁJgJij)ﬁj - BZJZ;Z” =b; — ZJij;Uij Vi

*ﬂJile)j + 5Zij = U + N\ Vl,j
s.t. (Zi,)\i) S SCJ' Vi.
(33)

The problem described in (33) still involves coupling between
all 9; and z;;. Therefore, solving it all at once would negate
the benefits of using a subsystem-based representation.

However, by leveraging the ADMM structure (7), an alter-
nate resolution for each variable is performed, allowing us
to capitalize on the subsystem-based partitioning described
above. By solving (33) with respect to © first, it reduces to
following linear problem for all j:

(A5 + D BIG )05 = by + D J5(B2i; — i) (B4

where [ denotes the iteration index. The process described in
(34) essentially involves obtaining a linear solution of size

IFor consistency, \; in (29) should technically be stacked row-wise for this
case, but we maintain the current notation for simplicity.



dim(9;) for each subsystem, and always solvable from the
positive definite property of the left-most matrix. A crucial
difference between (28) is that the linear problem is much
smaller, while each of them can be solved in parallel. Each
A+, B Ji; can be pre-factorized before iteration, as they
remain invariant unless 3 is modified.

Then, solving (33) with respect to z;; can be reduced to
following problem for all ¢:

BZZFI = ﬁJijﬁ;‘+1 + Ulij +)\é+1, S.t. (Z,“ )\z)
—_——

€S-

(35

i

The solution of (35) can be performed independently for each
1, allowing for parallelization across all constraints. Addition-
ally, as described in Sec. IV-C, the relation between z and A is
matrix-free, thus allowing for a closed-form solution process.
However, the formulation needs to be slightly adjusted since
multiple slack variables in Z; are involved in each constraint.
For the case of hard constraint, (14) can be adjusted for the
subsystem-based reformulation as follows:

+1
Al.‘f‘l :H>0 <—Zj yij +B61)

36
Z (36)

where |Z;| denotes the cardinality of Z;. Meanwhile, for the
soft constraints, (15) can be adjusted as follows:

Cbi) yilt + Bries

AL = 37
! bi| Zi| + B 67
Finally, for the contact constraints, we can use
stri Z j y£+1 + ﬁei
AL = g (J 7 (38)

instead of (16). The resulting equations (36), (37), and (38)
still consist of simple algebraic operations, making them easy
to compute. Note that we directly employ the strict operator
in (38), without adopting the cascaded approach with the
proximal operator as used in CANAL. This is because ADMM
strategically employs a single alternating solution without fully
solving the surrogate problem, which provides conservative
updates and maintains stability without requiring a specific
convexification and globalization process.

After both alternating steps, the Lagrange multiplier is
updated as follows:
g L N

— _ )\é+1.

Hence, there is no necessity to store u;; separately; only A,
needs to be retained. In summary, our SubADMM iterates
between (34), (35), and (39), with each step being naturally
parallelizable per subsystem or per constraint as illustrated in
Fig. 5. This property ensures the scalability of the algorithm
with respect to the number of subsystems and constraints.

C. Factorization of Subsystem Matrices

In the SubADMM process described above, the size of each
linear problem in (34) is determined by dim(¢;), which equals

i
©

Fig. 5. Iteration structure of SubADMM. ¥ is updated independently for
each subsystem block, while z is independently updated for each constraint
factor.

6 for a subsystem consisting of a single rigid body. However
for subsystems with articulated body structures, it corresponds
to the total DOF of joints. Generally, the factorization of a
matrix has a complexity of O(n?). Consequently, there may
be concerns that our algorithm could become susceptible to
an increase in the degrees of freedom of the subsystem, such
as in a tree with extensive length, unless A; + Y, BJJi;
possesses a special structure.

However, the reformulation technique (31) we established
earlier for the Jacobian matrix, becomes crucial in addressing
this concern. To illustrate, let us derive the equation as follows:

A+ BIET = A+ Y BTG I T T
[ 7 k
H,,,

. . )
- JB]’J T JBJ’J

(40)

where B; represents the set containing every body index in
Jj-th subsystem, Jg, ; denotes the Jacobian mapping from
subsystem joints to all child body spaces, and H;, € R6*¢
can be interpreted as the virtual effective matrix defined for
each body, expressed as

Hy, = My, + Y BJL, T, 1)

where My, is the inertia matrix for the body originated
from A;. One significant advantage of the structure (40) is
that ngj forms a block-diagonal matrix, ensuring that the
entire matrix always maintains the same sparsity structure
as the inertia matrix of the articulated body. Hence, we can
implement an efficient construction and factorization algorithm
based on the kinematic-tree structure, which is well-known as
Featherstone’s algorithm [49]. Specifically, we use composite
rigid body algorithm [49] that capitalizes on branch-induced
sparsity to streamline computations, recursively navigating to
the parent node to perform efficient fill-ins. In Appendix A, we
details how the algorithm on (41) can be efficiently performed.
It is worth noting that, without the Jacobian reformulation
described in (31), Hp, does not exhibit block diagonal char-
acteristics. As a result, the sparsity pattern becomes more
complex and cannot be determined solely by the kinematic
structure, but rather changes with each time step.



Algorithm 2: Simulation using SubADMM

1 subsystem-based reformulation (Sec. VI-A)
2 while simulation do

3 initialize (8

4 Vj construct A;, b; in parallel

5 Vi construct e;, J; in parallel

6 Vj factorize A; + ), BJ%JM in parallel
(Sec. VI-C)

7 | initialize [ = 0, 20, u°

8 while SubADMM loop do

9 Vj update 9" in parallel (34)

10 Vj update ZT' in parallel (35)

11 Vi store ultt (39)

12 compute residual 6,04 (42)

13 if 0, + 04 < 04, or | = 1, then

14 | break

15 else

16 update 8 (43) (optional)

17 Vj refactorize A; + ), BJZ Ji; in parallel

18 end

19 l—1+1

20 end

21 update each subsystem state using ﬁ;“

22 end

Remark 1: Based on the aforementioned matrix structure,
rather than constructing and factorizing (40), we can solve
the linear equation (34) using the articulated body algorithm
[49] at each SubADMM iteration step. While this approach
strictly guarantees O(n) complexity for the body count, with
no additional overhead for changes in (3, we have observed
that using factorization is often more efficient in practice,
given that SubADMM typically requires a few tens of iteration.
Nonetheless, this alternative remains as a viable option.

D. Convergence and Adaptive Penalty Parameter

For strictly convex optimization, ADMM is known to guar-
antee convergence at a linear rate [43]. Although our formu-
lation shares similarities with the convex optimization (10),
the multi-contact condition is generally not integrable, mak-
ing theoretical convergence not well established in general.
However, we empirically find that the convergence properties
in our SubADMM-based simulations are comparable to those
observed in convex optimization.

Typically, residuals in ADMM are defined in two kinds:
primal and dual. In SubADMM, these definitions similarly
hold as follows:

@):IQ%XHJﬁ@j“%jH

. 42
ed:m?XHAj'Uj —bj —ZJ};)V” ( )

where 6, and 6; represent the primal and dual residuals,
respectively. Here, the primal residual can be interpreted as the
satisfaction of constraints, while the dual residual reflects the
satisfaction of the dynamics equations. Although we observe

stable convergence of the residuals (42) in SubADMM, the
method still inherits well-known drawbacks associated with
ADMM-style iterations. Specifically, the performance of the
algorithm is heavily dependent on the strategy used to select
the penalty parameter 3. A popular strategy is to adaptively
tune 3 based on the residual. Generally, a large 5 reduces
the primal residual, while a small 3 reduces the dual residual.
Therefore, we can adopt the strategy of adjusting 3 based on
the following rule:

/6
B=p Q—Z if 0, >~04 or 05 > ~0,

where v > 1 is a hyperparameter. This adjustment should
accompany the refactorization of A; + 5, 6J5 Jij. However,
thanks to our subsystem-based division structure, this refac-
torization can also be performed in a parallelized and scalable
manner, allowing us to reduce overhead and enable more
frequent feedback adjustments.

Moreover, another crucial aspect we observe to address this
issue is that the presence of large number of inactive con-
straints (the open case for contact) can impede convergence.
Therefore, conducting thorough broad-phase collision tests to
cull reasonable contact pairs is a significant step in enhancing
convergence speed. For the initialization of 3, we consider the
structure of the terms in (40). A practical strategy involves
balancing the weighting between the dynamics-related term
Aj; and the constraint-related term ), J7.J;;, as suggested in
general theoretical analysis [50], [51]. From this perspective,
B in (41) can be interpreted as reflecting a pseudo-density
(i.e., body mass divided by the number of contact points on
it), given that the Jacobian J; ;, maps the motion of the body
frame to the motion of a specific point on the body (see also
derivation in Appendix A). Based on this insight, we use the
geometric mean of the pseudo-densities of all bodies as the
initial value for f5.

(43)

E. Comparison with Previous Work

Portions of the algorithm outlined in this section were
presented in our previous work [34], applying the idea of lever-
aging ADMM in physics simulations and the division of the
entire multibody system into smaller parts. However, the scope
of this article extends to more general theories and diverse
variations of the augmented Lagrangian for robotic multi-
contact simulations, as outlined in Sec. IV and V. For this
section specifically, this article provides a complete subsystem
division and parameter adaptation rule for subsystem-based
ADMM. More importantly, we introduce novel reformulation
techniques (31), enabling efficient factorization of submatrices
described in Sec. VI-C. This improvement enhances scalabil-
ity, not only for the number of subsystems but also for the
DOF of each subsystem. Finally, a variety of new manipulation
examples are implemented in simulations for the experiments.

VII. EXAMPLES AND EVALUATIONS

In this section, we present several implementation examples
to illustrate the advantages of the proposed solver algorithms.
The key question we address here is whether our AL-based



Fig. 6. Left: Visualization of an M48 bolt and nut used in our bolt-nut
assembly simulation test. Right: Contact points visualized as blue spheres in
the test configuration.

multi-contact solver (CANAL and SubADMM) can address
the limitations of existing per-contact schemes in solving NCP
posed in various robotic scenarios. As a universal baseline, we
have implemented the Projected Gauss-Seidel (PGS) solver,
which is widely utilized in numerous software applications
(see Table I) and can handle NCP without the need for model
relaxation. Note that we do not consider methods that depend
on specific model relaxations, such as direct pivoting schemes
based on LCP formulation.

Quantifying the accuracy of different multi-contact solvers
is non-trivial. For each time step, it is essential to assess how
well the solution (0, \) satisfies two conditions: dynamics and
contact constraints. For consistent comparison, we first project
© using the relationship & = A~1(b + JT)\) based on the A
result of solver, making the dynamics residual become zero.
Subsequently, we compute z using the following equation:

zi = J;i0— N + T(—Jl’f) + A — ei)

which is derived from the process described in Sec. IV-C,
and we measure the contact residual as || Jo — z|| divided
by the number of contacts. This residual becomes zero only
when the contact conditions are exactly satisfied. Using this
strategy, we can fairly compare the accuracy of different
solvers: dual-based (PGS) and primal-dual based (CANAL
and SubADMM). For all examples, we utilize a time step of
1/240 s.

For the code implementation, we utilize the C++ language,
employing the Eigen matrix library [52] for linear algebra
operations and the OpenGL library for rendering. Computation
time is measured on an Intel Core i5-13600KF CPU at 3.50
GHz.

A. Bolt-Nut Assembly

The first example we consider is the simulation of a bolt-
nut assembly. This scenario is characterized by the inten-
sive formation of contacts and stiff interactions due to the
complexity of the geometry. As a result, the DOF for the
constraints (typically hundreds) far exceed those of the system
itself. In this context, two significant issues arise with the per-
contact solver: 1) the Delassus operator becomes large and
dense (i.e., many contacts are coupled), which slows down
the iteration scheme, and 2) the intensive contact results in a
limited feasible region or even leads to infeasibility, thereby
slowing convergence.

——CANAL ——CANAL
—— SubADMM ——SubADMM
PGS 3 PGS
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Fig. 7. Comparison of CANAL, SubADMM, and PGS for the bolt-nut
assembly task simulation. Left: Residual decrease over computation time.
Right: Computation time over iteration.

The scenario is configured via a pair of M48 bolt and nut,
visualized in Fig. 6. Here, collision detection process between
the bolt and nut might be challenging. Therefore, we adopt
a neural network-based signed distance function model pre-
sented in [53]. Based on this model, we can precisely represent
the surface of the bolt, while the nut is represented through
multiple triangulated face to perform collision detection using
Frank-Wolfe algorithm [54]. Additionally, if the number of
detected contact points exceeds 120, which is empirically
found to be impractical, we perform contact clustering [53],
[55] to effectively reduce them.

1) Single Step Test: To precisely evaluate the quantitative
performance, we first measure the results of running different
solvers single step at the same state and inputs. For test case
generation, we sample 10 configurations of a nut that form
numerous contacts with the bolt (see Fig. 6 for an example).
We then apply 10 random external wrenches to the nut,
generating a total of 100 test cases. The performance of the
solvers in such scenarios is depicted Fig. 7. As demonstrated,
CANAL and SubADMM solve the problems with higher
accuracy compared to the PGS algorithm. Both algorithms can
achieve residuals of 10~% or less, whereas PGS struggles to
converge quickly past 10~4. In particular, CANAL exhibits
superlinear convergence, achieving complete convergence in
about 10 iterations. While SubADMM quickly converges to a
certain accuracy, due to its first-order nature, it shows lower
accuracy than CANAL after a certain period. For the com-
putation time per iteration, SUbADMM requires significantly
less compared to the other two algorithms as it requires
negligible preparation phase cost and each iteration can be
performed very quickly. CANAL takes more time per iteration
compared to PGS, however, its rapid convergence leads to
fewer iterations overall, resulting in shorter total computation
time. While SubADMM and PGS incur uniform costs for each
iteration, leading to a linear increase in computation time,
computation time for CANAL grows sublinearly as iterations
progress. This is due to the effect of warm-starting explained
in Sec. V-D, as the outer AL iteration approaches convergence,
the number of required Newton iterations to solve the inner
convex problem decreases. Overall, the results suggest that if
we aim to achieve reasonable accuracy in a very short amount
of time, SUbADMM is a good option. Conversely, if very
high accuracy is desired and more computational budget is
available, CANAL is the preferable option.
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Fig. 8. Left: Visualization of a bowl, plate and pot used in our dish piling
simulation test. Right: Contact points visualized as blue spheres in the test
configuration.
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Fig. 9. Comparison of CANAL, SubADMM, and PGS for the dish
piling simulation. Left: Residual decrease over computation time. Right:
Computation time over iteration.

2) Assembly using Robot Manipulator: We also perform
a full assembly task simulation using a robotic manipulator.
The manipulator comprises a Franka Panda arm equipped
with a Hebi X5 gripper, with the nut attached to the gripper.
We control the robot using joint-level impedance control to
follow the desired assembly trajectory, and the snapshots are
depicted in Fig. 1. For performance validation, we limit the
computation budget for the solver to 0.5 ms for each time
step. As a result, simulations using CANAL and SubADMM
successfully complete the assembly task. In contrast, PGS
fails, as significant penetrations are generated due to its lack
of convergence.

B. Dish Piling

The next scenario we implement involves piling dishes, a
common situation in household environments. To compose the
environment, we generate various types of dishes, including
bowls, plates, and pots, as depicted in Fig. 8. As the shapes of
the dishes are concave, this scenario is characterized by a large
number of contacts distributed across the surfaces, leading to
issues similar to those described in Sec. VII-A. Moreover, we
model light bowls and plates (0.1 kg) beneath a heavy pot
(5 kg), resulting in a challenging mass ratio for the stable
simulation.

We develop a specially designed class of signed distance
functions to represent the geometry of dishes, which is de-
tailed in Appendix B. This approach enables us to compute
the signed distance using simple algebraic operations, such
as rounding and revolution. Subsequently, we generate the
corresponding triangulated faces to perform collision detection
between dishes, employing the same Frank-Wolfe algorithm
used in the bolt-nut assembly scenario.

1) Single Step Test: For a single-step test, we first obtain the
stacked pose of four dishes (bowl-bowl-plate-pot), as depicted

Fig. 10. Snapshots of a particle pouring task simulation. SubADMM excels
in computation speed and scalability; CANAL in accuracy.
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Fig. 11. Comparison of CANAL, SubADMM, and PGS for the pouring
simulation. Left: Average computation time over system DOF. Right: Average
residual over system DOF.

in Fig. 8. We then apply random external wrenches to each
dish, generating a total of 100 test cases. The performance
of the solvers in these cases is depicted in Fig. 7. As shown,
CANAL and SubADMM achieve significantly better accuracy
in less time compared to PGS. CANAL achieves the highest
accuracy, with residuals under 1078, and exhibits over linear
convergence. SUbADMM, demonstrating first-order conver-
gence, struggles to achieve residuals under 10~%. Due to the
odd mass ratio present in the environment, the differences in
achievable residuals between the solvers are larger compared
to those in the bolt-nut assembly test. This suggests that
CANAL may be the more preferable option in this case,
although SUbADMM remains a viable choice for achieving
moderate results in a very short time. The trend in computation
time per iteration is similar to that observed in bolt-nut assem-
bly scenarios; per-iteration cost ranks as follows: CANAL >
PGS > SubADMM, and the cost for each iteration in CANAL
tend to decreases as the iterations proceed.

2) Piling using Robot Manipulator: We also perform a
piling task simulation using a robotic manipulator composed
of a Franka Panda arm equipped with an Allegro hand,
bringing the total system dimension to 47. We employ a joint-
level impedance controller to enable the robot to follow the
desired grasp-and-place trajectory, as depicted in the snapshots
in Fig. 1. Similar to the bolt-nut assembly simulation test,
we limit the computation budget to 1 ms to compare the
performance of different solvers. In this test, SUbADMM and
CANAL can successfully simulate the piling, while PGS fails,
generating jittery movements due to a lack of convergence.

C. Pouring

We then simulate the pouring of particles contained in a
bottle, employing a 28 DOF dual-arm manipulator with the
upper body of a Unitree G1 with gripper. Also the particles



are modeled as spheres with a radius of 5 mm and a density of
10 g/cm?, contained within a bottle whose geometry is defined
in the same way to the dishes in the previous subsection. We
program the robot to reach for, grasp the bottle, and then pour
the particles into another bottle, as depicted in the simulation
snapshots in Fig. 10.

This scenario is characterized by a large number of bodies;
therefore, both the system DOF and the constraint DOF are
large, yet their relationship is relatively sparse compared to
previous examples. Moreover, the results are expected to
maintain a stable grasp and precisely emulate the coupling
between a high-gain controlled robot and lightweight particles.
Our primary objective for this scenario is to evaluate the
scalability of the solvers. Therefore, we utilize a fixed number
of iterations for each solver—5 for CANAL and 100 for
SubADMM and PGS, then observe the average residual and
computation time over the task execution while varying the
number of particles in the bottle (9, 18, 27, 36, 45).

The results are depicted in Fig. 11. As shown in the plots,
the increase in computation time with respect to the particle
number (therefore, system DOF) is ordered as SubADMM
< PGS < CANAL. This result aligns with the theoretical
properties, as the alternating steps of SUbADMM scale at least
linearly with the number of subsystems and constraints. Note
that this scalability could potentially be reduced with the adop-
tion of more advanced parallelization hardware architectures,
although we remain this as a work for future implementation.
In the case of PGS, while the computation time for each
Gauss-Seidel iteration step increases near linearly, the com-
putation required to establish a contact relation in the dual
space (related to the Delassus operator) increases superlinearly,
making the overall exponent over SubADMM. CANAL scales
superlinearly mainly due to the factorization of the Hessian
matrix (24). However, the exponent is still significantly lower
than 3, which is typical for dense matrix factorization, because
we leverage the sparse structure of the contact Jacobian.

In terms of accuracy, CANAL outperforms both SubADMM
and PGS, aligning with theoretical expectations and previous
results. Within 5 iterations, the solver achieves a residual un-
der 10~°. Additionally, SbADMM consistently demonstrates
better accuracy than PGS, achieving approximately 0.1 times
the residual of PGS. We find that using PGS, attempting a
strong grasp on the bottle can lead to significant instability in
the simulation. For all solvers, the residual is not significantly
affected by the number of particles.

D. Ablation Studies

Lastly, we conduct ablation studies to validate the effective-
ness of the technical components presented in this article.

1) CANAL: First, we compare a cascaded Newton structure
in CANAL with performing augmented Lagrangian by directly
solving (19) using standard semismooth Newton methods.
For baselines, we implement two algorithms: trust-region
dogleg algorithm [48], which is a widely standard method for
nonlinear equation solver, and damped semismooth Newton
algorithms based on backtracking line search on merit function
[56]. For both methods, Jacobian of r(v) is derived similarly

TABLE II
COMPARISON RESULTS OF LEVERAGING A CASCADED NEWTON
STRUCTURE VERSUS DIRECTLY APPLYING STANDARD SEMISMOOTH
NEWTON SOLVERS IN AN AL-BASED MULTI-CONTACT SOLVER.

CANAL | TRDogleg | DampedSN
Inner iter. 30.55 118.8 246.9
Failure[ %] 0 1.2 1.1
Residual[-log] 8.2231 8.5693 8.5644
TABLE III

COMPARISON RESULTS OF ADMM WITH SUBSYSTEM-BASED SPLITTING
VERSUS MORE STANDARD SPLITTING STRATEGIES.

SubADMM | No Sub | No Body
Time[ms] 0.435 1.21 0.638
Residual[-log] 4.8802 4.8817 4.8562

with (23) and (24). However, since the operator 7' is a strict
operator here, the Jacobian is not guaranteed to be symmetric
positive definite. Therefore, solving the linear problem may
require additional computational effort in practice, compared
to the Newton step computation in CANAL (25).

For the test, we utilize the same environment and cases
described in the single-step test for the dish piling. The results
are shown in Table II. Here, we perform 10 AL loops for each
test case, and measure the number of inner iterations (i.e.,
Newton steps) throughout the entire AL loop, the failure rate
(if the inner loop fails to find the surrogate problem solution
within the desired tolerance), and the residuals of the resulting
solutions.

As indicated in the table, the number of inner iterations is
significantly lower for CANAL. This reduction is due to its
cascaded structure, which can transform solving the surrogate
problem into solving a convex optimization problem. Con-
sequently, this structure allows for a convergence guarantee
to the global minimum with exact line search. However,
both TRDogleg and DampedSN often gets stuck in a zone
where it cannot effectively reduce the merit function, leading
to requirement of more inner iteration steps and occasional
failure. TRDogleg relatively performs better than DampedSN,
with half the required inner iterations. Comparing the residuals
after 10 iterations, CANAL exhibits similarly low residuals
compared to the two baselines. This indicates that updating é;
in every AL iteration within the cascaded structure does not
substantially degrade the convergence properties of the entire
algorithm.

2) SubADMM: Next, we compare our SUbADMM with
ADMM implementations based on more standard splitting
strategies. For baselines, we implement the following methods:
1) ADMM without subsystem-based splitting (No Sub), as
described earlier in Sec. VI, which requires solving a full
system size linear equation (28), and 2) ADMM that utilizes
subsystem-based splitting but does not employ body-based
splitting (30) (No Body), which is equivalent to the algorithm
in our prior work [34].

For the test, we set up an environment where multiple
quadrupedal robots Laikago, are dropped onto the floor, as



Fig. 12. Snapshots of a multiple Laikago dropping simulation. The system
is divided into 8 subsystems, each interpreted as a kinematic tree.

depicted in Fig. 12. In this scenario, each robot possesses
18 DOF, resulting in a total system DOF of 144. For the
collision geometry, we approximate the trunk, legs, and feet
using simple primitives such as boxes and spheres. Typically,
80— 100 contacts are generated during the simulation. We use
fixed 100 iterations for SubADMM and other baselines.

The comparison results are shown in Table III. As demon-
strated, the ablation studies highlight the advantages of the
proposed techniques. SubADMM achieves the shortest compu-
tation time due to its ability to utilize efficient matrix assembly,
parallelized matrix factorization and solving. No Sub takes
the longest computation time, requiring about 2.78 times more
than SubADMM primarily due to its need for whole system
size matrix factorization. Compared to No Body, SubADMM
is about 1.46 times faster, as No Body cannot exploit efficient
submatrix factorization based on the structure given in (40).
Such differences could become more pronounced as the overall
system dimension increases, or through the employment of
advanced code parallelization techniques in SubADMM. For
example, in 27 Laikago dropping simulation, we find Sub-
ADMM is 3.63 times faster than No Sub. The residuals for
all three solvers are similar, as they share similar theoretical
convergence properties of ADMM.

VIII. DISCUSSIONS AND CONCLUDING REMARKS

In this article, we introduce two multi-contact solver al-
gorithms, CANAL and SubADMM, based on variations of
the augmented Lagrangian method. Our formulation extends
the theory of AL to handle multi-contact NCP by iteratively
solving surrogate problems and subsequently updating primal
and dual variables. In CANAL, we variate this AL-based struc-
ture into a cascaded form of convex optimization, which can
be solved by exact Newton steps, thereby ensuring accurate
and robust simulation results. In SUbADMM, we employ the
concept of ADMM to enable an alternating solution approach
to the surrogate problem. Here, we propose a novel subsystem-
based variable splitting method, which not only achieves a
parallelizable structure but also preserves the sparsity pat-
tern of the submatrix, significantly improving efficiency. The
examples demonstrate their effectiveness in various robotic
simulations characterized by intensive contact formation and
stiff interactions, and also illustrate the trade-offs between
CANAL, SubADMM, and other existing methods.

A variety of future research areas remain open within
the presented framework. From an algorithmic perspective,
the CANAL algorithm could be tested with other convex

optimization methods, such as the conjugate gradient [57] or
accelerated projected gradient [46], for example. SUbADMM
could be enhanced with various strategies to improve its
convergence, including the acceleration of fixed-point itera-
tions [58] and advanced penalty parameter update schemes.
Although our initial trials observed that the application of
these schemes could degrade the robustness of the simulation,
the development of a solid methodology still remains an
open question. From an implementation perspective, several
component of the current framework can be improved. For
instance, tailored factorization based on the branch-induced
sparsity structure could be adopted for CANAL. Additionally,
a GPU implementation for SubADMM could fully exploit its
parallelizable nature.

We believe that the algorithms presented in this article can
be further employed in the development of other model-based
solvers for robotic applications. For example, our problem
described in (8), when formulated without friction, becomes
equivalent to a quadratic programming problem, which is com-
monly encountered in motion primitives, planning, and model
predictive control of robotic systems. Moreover, a forward
simulation solver can be coupled with the differentiation of the
results, utilized to address diverse inverse problems involving
contact [22]. Our highly accurate solutions are particularly
beneficial from this perspective.

Finally, while the focus of this article is on contact solvers,
we also believe that contact modeling is a crucial aspect
of robotic simulation. This includes the representation of
geometry, definition of contact features, time stepping, friction
modeling, and often linked with the contact solver. In this
regard, investigating how our AL-based solver can be effec-
tively integrated with various aspects, including continuous
collision detection [59], contact fields [60], temporal position
updates [17], anisotropic friction, and lubrication [61], will be
a valuable topic to explore.

APPENDIX A
COMPOSITE RIGID BODY ALGORITHM FOR SUBSYSTEM
MATRICES

Contact Jacobian with respect to spatial velocity of the body
can be written as follows:

Jiv = Ri [Isxs  —[pi]]

where R; € SO(3) is the contact frame generated through the
contact normal and p; is the global position of the contact
point. Based on (44), (41) can be written as follows:

ku = Mbk + Z ngbk Ji,bk

(44)

_ |:mbk13><3

—My,, [Cbk] —[pi] :|
My, [Cbk}

I3xs

Iy, — mp, [Cbk]2:| + zl:ﬁ { il —[pi]?
where my, is the mass, I, is the moment of inertia, cp, is
the global center of mass position of the body. It can be easily
verified that Hp, shares the same fill-in structure as My, , with
only 10 elements required for matrix storage. Therefore, as
in the original composite rigid body algorithm, addition and
multiplication (of spatial transformation matrix) operations can
be performed with equal efficiency.



Fig. 13.

O A

Illustrations for dish signed distance function module generation.

APPENDIX B
SIGNED DISTANCE FUNCTION OF DISH MODULE

In our experiments, signed distance function of dishes are
defined as follows:

SDFsq(p) = SDFoq ([/p7 + 13 p3))

which is indeed revolution of following 2D signed distance
function (see also Fig. 13):

SDFxq(p) = min (dist(p, OA), dist(p, AB)) — d (45)

where A, B are points on the plane, and d is a thickness for
padding. By adjusting A, B and d in (45), we can generate
diverse range of dishes. Additionally, the derivative of (45)
can be computed analytically, and thus it can be utilized in
the collision detection process.
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