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Abstract— Collision detection is a fundamental problem
across various fields such as robotics, physical simulation, and
computer graphics. While numerous studies have provided
efficient solutions, based on the well-known Gilbert, Johnson,
and Keerthi (GJK) algorithm and Expanding Polytope Algo-
rithm (EPA), existing methods utilizing GJK-EPA often struggle
with smooth strictly convex shapes like ellipsoids. This paper
proposes a novel approach to the collision detection problem
converting it to a problem compatible with an unconstrained
Riemannian optimization problem. Moreover, we presents a
specific method of solving the problem based on twice differen-
tiable support functions and the Riemannian trust region (RTR)
method. The method exhibits fast and robust convergence
rate, leveraging the well-established theory of Riemannian
optimization. The evaluation studies comparing our method
to GJK-EPA method are done with pre-defined primitive
shapes. Additionally, a test result with several more complex
shapes is demonstrated exhibiting the method’s effectiveness
and applicability.

I. INTRODUCTION

Collision detection has earned great interests from
robotics, computer graphics, and video games, and many
algorithms were developed to efficiently solve it. The most
widely adopted collision detection algorithm is the Gilbert,
Johnson, and Keerthi (GJK) algorithm [1] which determines
whether a collision occurs between two convex bodies. As
an extension of GJK algorithm, the expanding polytope
algorithm (EPA) [2] further computes the penetration depth
and the direction of separation. Both GJK algorithm and EPA
utilize the notion of support function [3], which is deeply
related to convex sets mathematically. GJK-EPA method
has been proved to be efficient and robust with mesh-
based geometric representations, and many additional studies
have been conducted to enhance the algorithm [4], [5], [6].
Nonetheless, the iteration number of GJK-EPA method sig-
nificantly increases when dealing with scenarios associated
with smooth strictly convex shapes such as ellipsoids due
to the discrete nature of its algorithm. Such limitations can
pose challenges to simulation or manipulation planning with
various real world objects which often exhibit such smooth
geometric characteristics.

Recently, other collision detection methods are actively
researched based on optimization formulation. Montaut et.
al. [7] demonstrated that GJK algorithm can be regarded
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Fig. 1. A snapshot for continuous collision detection between two convex
models fitted to the object models from YCB dataset [10] with smooth
surfaces. In the figure, the fitted models are scaled larger than the original
ones for a clear visualization.

as a specific case of the Frank-Wolfe algorithm in con-
vex optimization. Leveraging this insight, they proposed an
accelerated version of GJK algorithm, yet, still retaining
fundamental limitations of the original GJK algorithm. Ruan
et. al. [8] presented several nonlinear least square formula-
tions and associated algorithms for the collision detection
with parameterized superquadric representations. Although
the optimization problems introduced in [8] can be solved
successfully in many cases, not much theoretical studies
for the convergence have been conducted yet, which is
important since one failure case can cause significantly dif-
ferent results in simulation or planning applications involving
contacts. Finally, in the work of Lee et. al. [9], a novel
smooth representation of convex bodies is introduced, with
differentiability and strict convexity as while also capable
to approximate non-smooth polytopes. Combined with this
novel representation, the differentiable contact features can
be obtained and the collision detection problem is solved by
the Newton-Rhapson method exploiting the derivatives of the
obtained contact features in [9]. However, the method in [9]
requires additional iterative initialization process for stable
convergence in practice.

In this paper, we introduce a novel collision detection
method which is capable of computing the contact features
(e.g., a contact normal and witness points) between smooth
strictly convex bodies while theoretically-guaranteeing fast
convergence and robustness in both penetrating and non-
penetrating scenarios. We discovered that the collision de-
tection problem is compatible with an unconstrained Rie-
mannian optimization problem. More precisely, among var-
ious methods in optimization on manifolds, we adopt the
Riemannian trust region (RTR) method [11] to leverage
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the smoothness of the convex bodies and ensure a fast
convergence rate when applied to the collision detection
problem. The major contributions of this paper are twofold:

• To the best of our knowledge, this paper is the very
first result to formulate the collision detection as the
Riemannian optimization problem; and

• We theoretically establish the global convergence and
the local superlinear convergence rate with RTR method
by leveraging the second order information from given
geometries.

We believe that the algorithm presented in this paper is
promising for a wide range of applications in robotics
such as simulation [12], motion planning [13], trajectory
optimization [14], and even real time control associated with
contact and collision avoidance.

The rest of the paper is organized as follows. Mathematical
preliminaries are briefly introduced in Sec. II. Then, we
describe how the collision detection problem can be refor-
mulated as a Riemannian optimization problem and solved
efficiently with RTR method assuring the local superlinear
convergence up to the small penetration depth between the
two convex bodies in the collision detection problem in Sec.
III. Further, differentiable support functions suited to our
method are presented in Sec. IV. Exploiting the presented
support functions, performance evaluation of our method
compared to GJK-EPA method is presented in Sec. V. Lastly,
conclusion and future works are discussed in Sec. VI.

II. PRELIMINARY

A. Support Function

Given a convex set C in Rn, a support function hC : Rn →
R for C is defined by

hC(x) = sup
s∈C

x · s (1)

where x ∈ Rn and · denotes the standard inner product
on Rn. The limit point s(x) ∈ ∂C of s ∈ C satisfying
hC(x) = x·s(x) can be interpreted as the farthest point in the
direction of x among the points in the closure of C, and it is
often called a support point. In addition, we establish some
basic properties of the support function. For any convex sets
A,B ⊂ Rn and the corresponding support functions hA, hB ,
the following holds:

hA(λx) = λhA(x), ∀λ ≥ 0, x ∈ Rn (2)
hA+B(x) = hA(x) + hB(x) (3)

where A + B = {a + b ∈ Rn | a ∈ A, b ∈ B} denotes a
Minkowski sum of two sets A,B.

Assuming only closed convex sets, the correspondences
between convex sets and support functions defined by (1)
are one-to-one [3], which encourages us to exploit support
functions as representations for convex bodies. To ease our
discussion, any convex bodies without additional statements
are considered to be compact (i.e. closed and bounded).

Fig. 2. The map x 7→ s(x), whose domain is a unit sphere, is an inverse
of the Gauss map [16], where the Gauss map assigns each point p ∈ C to
the unit normal vector x of C at p.

On the other hand, if hC is differentiable on Rn\{0}, it is
known that the support point s(x) can be computed by

∂hC(x)

∂x
= s(x) ∈ Rn.

if and only if the convex body C is strictly convex and
x represents a normal vector of C at s(x) [15]. From the
positive homogeneity property (2), we can see that s(x)
is uniquely determined by the direction represented by x.
This fact implies that restricting the domain of the map
x 7→ s(x) to a sphere makes the map x 7→ s(x) bijective.
Particularly, restricting the domain to a unit (n − 1)-sphere
Sn−1 transforms the map x 7→ s(x) into an inverse of a
Gauss map which has a special role when dealing with the
curvature of smooth surfaces in differential geometry [15],
[16], [17]. Lastly, note that if hC is a C2 function (i.e. twice
continuously differentiable) we call C be of class C2.

B. Minimum Translational Distance Model

Contact features between two convex bodies are mainly
composed of a penetration depth, a contact normal, and
witness points. The contact features may have different
mathematical definitions depending on which contact model
adopted. One of the most widely adopted method for deter-
mining the contact features between two convex bodies is
the minimum translational distance (MTD) model [18], [1],
[2]. The MTD model defines a function MTD+(C1, C2) for
convex bodies C1, C2 ⊂ Rn as follows:

MTD+(C1, C2) = min
t∈Rn

{
∥t∥

∣∣∣∣ ∂C1 ∩ ∂(C2 + t) ̸= ∅,
Int C1 ∩ Int(C2 + t) = ∅

}
.

where Int Ci and ∂C denote the interior and the boundary
of Ci respectively for each i = 1, 2. Then, to distinguish the
cases whether a penetration occurs or not, the MTD itself is
defined by

MTD(C1, C2) =

{
MTD+(C1, C2) if C1 ∩ C2 = ∅
−MTD+(C1, C2) otherwise

.

Remark 1: Computing the MTD function coincides to
finding the closest point on ∂(C2 + (−C1)) to the origin,
where C2 + (−C1) denotes the Minkowski sum and −C1 =
{−x ∈ Rn | x ∈ C1}.
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Algorithm 1 Basic Form of the Riemannian Optimization
Initialize x0 ∈M.
repeat

Compute step vk ∈ Txk
M

Update xk+1 = rtxk
(vk)

until termination condition is satisfied

C. Riemannian Optimization

Suppose that we are given an unconstrained optimization
problem

min
x∈M

f(x) (4)

where M is a Riemannian manifold with a Riemannian
metric ⟨ , ⟩ which defines an inner product ⟨ , ⟩x : TxM×
TxM→ R on a tangent space TxM at each x ∈M. A class
of such problem is called an optimization on manifolds or
Riemannian optimization [19]. To deal with its non-linearity,
Riemannian optimization exploits a retraction map which is a
differentiable map rt :

⋃
x∈M TxM→M, (x, v) 7→ rtx(v)

such that each curve c(t) = rtx(tv) satisfies c(0) = x and
c′(0) = v. Equipped with a retraction map, the basic form
of the Riemannian optimization algorithms is depicted in
Algo. 1, and there exist numerous variations according to
which retraction map rtx(v) is utilized and how k-th step
vk ∈ Txk

M is computed at each iteration [11], [20], [21].
In the next section, we discuss how the collision detection
problem can be reformulated into a Riemannian optimization
problem.

III. MTD PROBLEM AS RIEMANNIAN OPTIMIZATION

In this section, we introduce the reformulation of MTD
problem into an unconstrained optimization on Sn−1, which
is the space of unit normal vectors of the boundary of a
strictly convex body in Rn, by observing the peculiar relation
between the minimum distance problem and the support
function. Then, we exhibit that the problem with convex
bodies of class C2 can be solved by RTR method ensuring
superlinear convergence rate as long as the penetration depth
between the convex bodies is small enough.

A. Reformulating MTD Problem

We first introduce well known dual formulation of the
minimum distance problem from [22]. Given convex sets
C1, C2 with the corresponding support functions hC1

, hC2
,

the minimum distance between the two sets are given by

min
p1∈C1,p2∈C2

∥p1 − p2∥ = − min
∥x∥≤1

(hC2
(x) + hC1

(−x))

= − min
∥x∥≤1

h∆C(x)

with ∆C = C2 − C1, where the last equality holds by
(3). Then, we can observe that if 0 /∈ ∆C, the minimum
of h∆C(x) is achieved only if ∥x∥ = 1 by the positive
homogeneity property (2) of the support function. Noticing
that 0 /∈ ∆C is equivalent to C1 ∩ C2 = ∅, it can be inferred
that MTD(C1, C2) coincides to the negative of the minimum
of h∆C |Sn−1 whenever C1 and C2 are non-intersecting.

Fig. 3. For a compact convex set C, points p̃, p ∈ ∂C determined by a
normal vector x ∈ C satisfy the inequality ∥p̃∥ ≤ hC(x) ≤ ∥p∥ and the
equality holds if p is the closest point of the origin O in the boundary ∂C.

Moreover, the observation above can be extended to the
case when C1 and C2 have intersection. First, consider an
arbitrary compact convex set C containing 0 inside and let hC
be its support function. Then, for any supporting hyperplane
H at each p ∈ ∂C, the distance between H and the origin is
always less than or equal to ∥p∥. Also, by the definition,
hC(x) for x ∈ Sn−1 is a distance between a supporting
hyperplane whose normal is x, hence we get

min
x∈Sn−1

hC(x) ≤ min
p∈∂C

∥p∥. (5)

On the other side, consider a line segment l connecting the
origin to its projection onto the supporting hyperplane H of
C whose normal is x ∈ Sn−1. Then, an intersection point p̃
of l and ∂C between the origin and the supporting hyperplane
H satisfies

∥p̃∥ ≤ length(l) = hC(x) (6)

since C is convex as visualized in Fig. 3, and this directly
induces

min
p∈∂C

∥p∥ ≤ min
x∈Sn−1

hC(x). (7)

Combining (5) and (7), we get the equality

min
p∈∂C

∥p∥ = min
x∈Sn−1

hC(x).

Now, recalling the statement in Remark 1, the minimum
translational distance between two compact convex sets C1
and C2 is equivalent to the following:

MTD(C1, C2) = − min
x∈Sn−1

h∆C(x). (8)

Note that the optimal solution of (8) becomes the direction
of separation with minimum translational distance.

B. MTD Problem as Riemannian Optimization

By (8), we can formulate MTD(C1, C2) for two convex
sets C1, C2 ⊂ Rn as a single unconstrained optimization
problem on Sn−1 which is a compact manifold. This formu-
lation implies that various tools from the field of Riemannian
optimization are exploitable. Among the tools of Riemannian
optimization, we utilize the Rimemannian trust region (RTR)
method [11] to solve MTD(C1, C2) since our main focus is
on smooth convex bodies allowing us to leverage second
order information of the corresponding support functions.
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Algorithm 2 Solving MTD problem
Given C1, C2 with support functions hC1 , hC2

Define h∆C(x) := hC2
(x) + hC1

(−x)
Set maximum radius d̄ > 0, threshold ρ′ ∈ (0, 1/4) and
optimality constants ϵg, ϵH > 0
Initialize x0 ∈ Sn−1, d0 ∈ (0, d̄), k = 0
repeat

Compute vk solving (9) for xk, dk via tCG method
Compute x+

k = (xk + vk)/∥xk + vk∥
Compute ρk =

h∆C(xk)−h∆C(x
+
k )

mxk
(0)−mxk

(vk)
.

Update next point xk+1:

xk+1 =

{
x+
k if ρk > ρ′

xk otherwise

Update trust region radius dk+1

dk+1 =


dk/4 if ρk < 1/4

min(2dk, d̄) if ρk > 3/4

dk otherwise

k ← k + 1
until (13)

RTR method can be seen as an analogy of the well known
trust region method [23], as discussed in [11].

To begin with, let Sn−1 be endowed with a Riemannian
metric ⟨ , ⟩ induced from Rn, and rtx(v) := x+v

∥x+v∥ be a
retraction on Sn−1 which is clearly smooth. Also, assume
that C1 and C2 are of class C2 (i.e. support functions hC1

and hC2
are twice continuously differentiable on Rn\{0}).

Given a k-th iteration point xk ∈ Sn−1 and a trust region
radius dk > 0, our algorithm with RTR method solves the
following subproblem

min
v∈Txk

Sn−1
mxk

(v) s.t. ⟨v, v⟩xk
≤ d2k, (9)

for a model function mx : TxSn−1 → R, which is a quadratic
approximation of h∆C on TxSn−1 at x ∈ Sn−1, as defined
by

mx(v) = h∆C(x) + ⟨gradh∆C(x), v⟩x

+
1

2
⟨v,Hessh∆C(x)v⟩x. (10)

In (10), gradh∆C(x) and Hessh∆C(x) denote the Rieman-
nian gradient and the hessian of h∆C respectively. As shown
in [19], the Riemannian gradient and hessian of an arbitrary
smooth function f : Sn−1 → R on a unit (n − 1)-sphere
Sn−1 can be easily calculated by

grad f(x) = (In − xxT )
∂f

∂x
(11)

Hess f(x) =
∂2f

∂x2
−
(
xT ∂f

∂x

)
In (12)

where ∂f
∂x ∈ Rn and ∂2f

∂x2 ∈ Rn×n are the regular gradient
and the hessian of f on Rn, and In is the n × n identity
matrix.

In practice, the subproblem (9) is approximately solved
since exactly solving it may be time consuming. We se-
lected the truncated conjugate gradient (tCG) method [24]
to approximately solve (9), which is commonly adopted for
RTR method [11], [25], [19]. After solving the subproblem,
we update xk+1 with rtxk

(vk) according to the expected
improvement of the function value where vk ∈ Txk

Sn−1 is
the k-th step resulted from tCG method. The procedure above
repeats until the following termination criterion is satisfied
for x = xk:

∥ gradh∆C(x)∥ < ϵg, Λmin,x (Hessh∆C(x)) > −ϵH (13)

where ϵg > 0 and ϵH > 0 are sufficiently small optimality
constants, and Λmin,x (H) for an n × n matrix H denotes
the minimum eigenvalue of H on TxSn−1. The summarized
procedure of solving the MTD problem based on RTR
method is given in from Algo. 2.

Note that we utilize representations of gradh∆C(x) and
Hessh∆C(x) projected to TxSn−1 when we solve (9) and
compute (13). The projected representations are computed
by V T gradh∆C(x) ∈ Rn−1 and V T Hessh∆C(x)V ∈
R(n−1)×(n−1) with an arbitrary n × (n − 1) matrix V
which column vectors form an orthonormal basis on TxSn−1

(i.e. V Tx = 0, V TV = In−1). We also mention that
the representation (12) is actually not mathematically well-
defined since the precise definition of the Riemannian hessian
on Sn−1 at x ∈ Sn−1 is restricted to tangent space TxSn−1.
Nevertheless, the representation (12) does not hinder the
validity of subsequent arguments presented in the paper.

C. Convergence of MTD Problem with RTR Method

It is shown in [11] that RTR method ensures local conver-
gence if an objective function f :M→ R is a C2 function
and M is a compact manifold. Additionally, if x∗ ∈ M
is a non-degenerate local minimizer (i.e. grad f(x∗) =
0 and Hess f(x∗) is positive definite on Tx∗Sn−1), then
RTR method exhibits superlinear convergence rate around a
neighborhood of x∗ [11]. It is noticed that our setting of
collision detection satisfies the first statement since Sn−1

is compact and we are dealing with convex bodies of
class C2. Moreover, we show that the the global minimizer
satisfies non-degeneracy as long as the penetration depth
is small enough. To concretely state the condition for the
non-degeneracy, we define the minimum radius of curvature
ρmin(C) of a convex set C of class C2 by

ρmin(C) = min
x∈Sn−1

Λmin,x

(
∂2hC

∂x2
(x)

)
.

Then, the following theorem encapsulates our arguments
about the convergence of Algo. 2.

Theorem 1: Let C1 and C2 be compact convex bodies of
class C2 with the associated support functions hC1

, hC2
. Then

the following holds:
1) Algo. 2 always converges to a local minimizer of (8).
2) There exists a neighborhood around a global minimizer

of (8) such that Algo. 2 exhibits superlinear conver-
gence if MTD(C1, C2) > −(ρmin(C1) + ρmin(C2)).
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Proof: As we have discussed in the beginning of Sec.
III-C, the item 1) holds by the convergence property of RTR
method [11] induced from the compactness of Sn−1. Now,
observe that the Riemannian hessian at x∗ becomes

Hessh∆C(x) =
∂2h∆C

∂x2
(x)− h∆C(x)In

=
∂2hC1

∂x2
(−x) + ∂2hC2

∂x2
(x)− h∆C(x)In

by (12) and the definition of the support function. Since a
global minimizer x∗ satisfies h∆C(x

∗) = −MTD(C1, C2),
the above equation and the definition of ρmin(·) imply that
Hessh∆C(x

∗) is positive definite on Tx∗Sn−1 and we get
the result of the item 2).

Whether the algorithm always converges to a global
minimizer cannot be ensured by Theorem 1. However, we
empirically observed that Algo. 2 converges to the global
minimizer in every non-penetration scenarios when x0 is
defined by

x0 =
p1 − p2
∥p1 − p2∥

(14)

with centroids p1 and p2 of C1 and C2, respectively, which
are often known. In addition, Theorem 1 implies that the
convergence of Algo. 2 to a global minimizer always exhibits
fast convergence up to a small penetration depth, which
is commonly assumed for applications such as simulation.
Moreover, by the following remark, the allowable penetration
depth can be pre-defined, purely dependent to the shapes of
the convex sets in the collision detection problem.

Remark 2: The minimum radius of curvature of a convex
set is invariant under rigid-body transformations i.e.

ρmin(C̄(R, t)) = ρmin(C), C̄(R, t) = {Rp+ t | p ∈ C}

for any R ∈ SO(n) and t ∈ Rn.
The remark can be easily induced from the relation

hC̄(R,t)(x) = hC(R
Tx) + t · x. (15)

where hC̄(R,t) and hC are support functions of C̄(R, t) and
C, respectively. Note that we call (R, t) ∈ SE(n) as a
configuration of C̄(R, t).

Up to now, we have proposed the algorithm solving
(8) and its convergence property largely derived from our
method’s exploitation of second-order information. We now
conclude the section presenting additional useful property
of our method. Consider convex bodies C̄1(R1, t1) and
C̄2(R2, t2) transformed from C1 and C2 with configurations
(R1, t1), (R2, t2) ∈ SE(n), respectively. Then, since the
corresponding support functions are C2 functions, the first
optimality equation of (8) is totally differentiable with re-
spect to the configurations. As a result, we can compute the
derivatives of contact features from the total derivative of
the first optimality equation by utilizing the implicit function
theorem.

IV. IMPLEMENTATION

So far, we have discussed about the novel formulation
for the MTD model to which any general C2 support
functions in Rn are applicable. Although a large portion of
geometric representations in simulation or planning is based
on non-differentiable objects such as meshes or polytopes,
differentiable convex representations can still be used for
simulation or planning with fairly general geometric shapes
by exploiting, for example, convex decomposition technique
[26], [27]. In this section, we introduce differentiable ge-
ometric representations of convex sets in R3 suited to our
MTD formulation.

A. Superquadrics

Superquadrics have been widely used for representing
smooth primitive shapes such as superellipsoids [28], [29],
[8]. A superquadric SQ is an implicit surface in R3 defined
as a zero level set of a function fSQ : R3 → R, (i.e.
SQ = f−1

SQ(0)), where f is defined by

fSQ(p) =

((p1
a

) 2
α2

+
(p2
b

) 2
α2

)α2
α1

+
(p3
c

) 2
α1 − 1 (16)

for p = (p1, p2, p3) ∈ R3, scale factors a, b, c > 0 along each
axis and shape related parameters α1, α2 > 0. It is known
that SQ is the boundary of a strictly convex shape when
α1, α2 ∈ (0, 2). As mentioned in [8], from (16), we can
get a closed form parametrization (or an inverse Gauss map)
pSQ(x) of SQ with a surface normal x ∈ S2. In addition,
noting that pSQ(λx) = λpSQ(x) for any λ > 0 and x ∈ S2,
we can define a support function hSQ associated with SQ
by

hSQ(x) = x · pSQ(x)

which can be inferred from the relation between a surface
point and the corresponding surface normal in (1). hSQ(x)
is clearly differentiable and a C2 function when α1 ≥ 1 and
α2 ≥ 1. On the other hand, hSQ(x) is not a C2 function
when α1 < 1 or α2 < 1 due to the degeneracy of the
standard hessian matrix of fSQ in R3 at the certain points
of (±a, 0, 0, ), (0,±b, 0), (0, 0,±c). This degeneracy implies
that the inverse Gauss map pSQ(x) is non-differentiable at
the surface normals corresponding to the points above. To
ensure that hSQ(x) is a C2 function, we only deal with
superquadrics with α1, α2 ∈ [1, 2) when evaluating our
method. Also, for the cases when α1, α2 > 1, we add the
support function of a sphere with a small radius (∼ 10−4)
to the support funciton hSQ(x) enhancing our method by
imposing the positive definiteness to the hessian matrix of
hSQ(x).

B. Prescribed Support Functions

Suggested by Lee et. al. [9], a prescribed support function
smoothly approximates a support function of a convex hull
with finite vertices. Given a discrete convex hull Cd with
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(a) Superquadrics

(b) Cubes and a cylinder

Fig. 4. (a) Superquadrics represented by the implicit function (16). Left to
right ellipsoid, rectangular superellipsoid, double cone, double pyramid with
parameters specified in Table I. (b) Cubes and a cylinder represented by the
prescribed support function (17). Left to right the sharpness parameters are
set by p = 5, 10, 50, 40.

vertices {p1, · · · , pn} ⊂ Rn, the corresponding prescribed
support function hC : Rn → R is defined by

hC(x) =

(
n∑

i=1

{max(pi · x, 0)}β
)1/β

(17)

where β > 2 denotes the sharpness of the smoothed convex
geometry C which is uniquely determined by hC as shown in
[9]. We can observe that the smoothed geometry C converges
to the original discrete geometry Cd as β increases. Moreover,
the prescribed support function hC is a C2 function on
Rn\{0} and for any x ∈ Sn−1,

vT
d2hC

dx2
(x)v > 0, ∀v ∈ TxSn−1 (18)

if there exists at least 3 linearly independent vertices pi such
that pi · x > 0. In light of the result of Theorem 1, these
properties make a prescribed support function preferable to
be employed with our novel MTD method.

Another variant of a prescribed support function can
represents solids of rotation in R3. Consider a convex body
of rotation Cd generated by rotating a convex hull around
z-axis, where the convex hull is defined on xz-plane with
vertices {p1, p2, · · · , pn} ⊂ R2 symmetric to z-axis. Then,
the corresponding prescribed support function hC : R3 → R
is defined by

hC(x1, x2, x3) =

(
n∑

i=1

{max(pi · r, 0)}β
)1/β

(19)

where r = (
√
x2
1 + x2

2 + γx2
3, x3) ∈ R2 and γ > 0 is a

parameter determining flatness at the top and bottom of the
convex body. As γ goes to zero and and β increases, the
geometry represented by hC converges to a body generated
by rotating the 2D discrete convex hull. Note that hC also
satisfies the property (18).

TABLE I
SHAPE PARAMETERS FOR PRIMITIVE SHAPES

shape
parameters

shape
parameters

(a, b, c, α1, α2) (γ, β)

ellipsoid (0.5, 0.5, 0.7, 1.0, 1.0) cube 1 ( · , 5)
superellipsoid (0.7, 0.7, 0.35, 1.0, 1.5) cube 2 ( · , 10)
double cone (0.5, 0.5, 0.7, 1.5, 1.0) cube 3 ( · , 50)

double pyramid (0.6, 0.6, 0.6, 1.5, 1.5) cylinder (10−3, 40)

Fig. 5. The plots describe the relation between terminal optimality measure
(20) with the number of iterations and computational time taken until
termination for each method.

V. EVALUATION

In this section, we present the evaluation result of our
MTD formulation in R3, comparing to GJK-EPA method
[1], [2] with respect to optimality, iteration numbers and
computation time. To ensure that each algorithm solves the
MTD problem with the same geometries, both methods were
set to utilize the same support function for each shape. As
a measure of optimality, we adopted the norm of a cross
product between a normal direction x and a unit vector
aligned to the line connecting two witness points:

Optimality =
∥x× (s2(x)− s1(−x))∥
∥s2(x)− s1(−x)∥

. (20)

which measures how much the direction of the normal vector
x coincides to the direction of the vector between witness
points s1(x) ∈ C1, s2(−x) ∈ C2. The evaluation studies
were implemented in C++ and performed in a PC with
CPU Intel(R) Core(TM) i5-12400F 2.50 GHz. For GJK-
EPA method, open source collision detection libraries libccd
[30] and FCL [31] were adopted. Note that the evaluation
primarily focuses for the cases when two convex bodies
are in contact since the performance of EPA method, when
penetration occurs, deteriorates with smooth convex bodies.

A. Termination Criteria

Our method employs the termination criterion defined by
(13), whereas EPA method terminates when the difference
between the distance from newly expanded supporting plane
of a Minkowski sum to the origin and the previous nearest
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TABLE II
AVERAGED COMPUTATIONAL TIME FOR THE MTD METHODS

GJK-EPA SQ* PSF*

Ours (µs) ellip. super
ellip.

double
cone

double
pyramid

cube
1

cube
2

cube
3 cylinder

ellipsoid 58 68 73 67 66 65 59 68
14 30 37 31 25 22 24 56

super - 72 77 67 65 63 53 68
ellipsoid - 52 61 43 27 29 37 57
double - - 69 67 78 71 64 79
cone - - 56 50 35 38 45 72

double - - - 68 67 59 55 71
pyramid - - - 36 25 26 33 47

cube 1 - - - - 67 65 54 68
- - - - 12 15 22 32

cube 2 - - - - - 55 51 68
- - - - - 15 22 35

cube 3 - - - - - - 50 67
- - - - - - 25 42

cylinder - - - - - - - 83
- - - - - - - 60

* SQ: superquadric, PSF: prescribed support function

Fig. 6. The plot presents a comparison of the relationship between
penetration depth and computational for collision detection of a pair of
cube 1 - cube 1.

distance falls below predefined thresholds , ϵEPA > 0. These
different termination criteria result in differing values of
the optimality measure upon termination of Algo. 2 process
complicating the adjustment of ϵg in (13) and ϵEPA to achieve
consistent levels of optimality. Nonetheless, we set ϵg =
ϵEPA = 10−4 yielding the level of the difference between
resulted penetration depths to be 10−5 ∼ 10−3 which is
affordable in many robotic applications.

B. Evaluation and Analysis

The performance evaluation was conducted using vari-
ous primitive shapes, including an ellipsoid, a rectangular
superellipsoid, a double cone, a double pyramid, cubes
with varying sharpnesses, and a cylinder represented by
superquadrics and prescribed support functions. Specific
parameters for these primitive shapes are detailed in Table
I, and visualized images are provided in Fig. 4. For each
pair of the primitives, 500 random poses are generated and
collision detections were performed respectively using both
our method and GJK-EPA method. The results are depicted
in Fig. 5, illustrating the distribution of the optimality mea-
sures against iteration numbers and computational times. The
averaged computational times for each primitive pair, with
10,000 random poses, are summarized in Table II. Note that
the numbers in Table II are rounded to the closest integer.

Fig. 7. Overlapped visualizations of the selected YCB objects (textured)
and the corresponding fitted models (transparent) with prescribed support
functions. In the figure, the fitted models are scaled larger than the original
ones for clear visualizations.

Fig. 8. The plot illustrates the averaged computational times of GJK-EPA
method and ours against the sum of the vertices’ number of each YCB mesh
model pair.

Our method demonstrates superior performance over GJK-
EPA method, exhibiting better optimality measures and
smaller iteration numbers. The superiority stems from our
method’s exploitation of second-order information of the
given geometries, in contrast to the derivative-free nature
of GJK-EPA. Moreover, as depicted in Fig. 6, our method
demonstrates consistent computational time accross varying
penetration depths, which is attributed to the convergence
rate guaranteed by the well-established Riemannian opti-
mization theory.

Lastly, we note that the resulting depth MTD+(C1, C2)
obtained by our method is smaller than those obtained by
GJK-EPA method in the 99.96% of the evaluation cases.
This shows that our method converges to a global minimizer
in almost every cases in practice.

C. Demonstration on YCB dataset

In addition to the primitive shapes, we demonstrate the
significant enhancement of our method in collision detection
with more complex shapes compared to GJK-EPA method.
For this, we selected 5 real world models from YCB dataset
[10] consisting of smooth surfaces and computed their con-
vex hulls as our methods and GJK-EPA work on convex
shapes. For GJK-EPA method, we adopted hill-climbing
method [5] implemented by FCL [31] library to compute
the support function efficiently. In addition, we fitted each
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convex hull to a shape represented by prescribed support
functions (17) with 20 vertices by solving simple fitting
optimization problems. The selected YCB objects and the
fitted geometries are illustrated in Fig. 7. We conducted our
method with the fitted prescribed functions and GJK-EPA
with the discrete convex hulls of the selected YCB mesh
models for 10,000 times for each combination of the objects,
and recorded the averaged computational times.

The result is depicted Fig. 8 where the log scaled comptua-
tional time is plotted against the sum of the vertices’ number
of each YCB mesh model pair. It is noteworthy to emphasize
that utilizing our method with the fitted support functions
for the scenarios involving smooth surfaces can significantly
enhance the speed of collision detection.

VI. CONCLUSION

This paper is the first to establish the collision detection
problem between smooth convex bodies as a Riemannian
optimization problem. Employing RTR method, our collision
detection algorithm always converges to a local minimizer
and exhibits superlinear convergence around a global min-
imizer within a specific small penetration depth. We also
introduce classes of support functions applicable to our
collision detection algorithm. By exploiting second-order
features of given geometries, our algorithm outperforms
conventional GJK-EPA algorithm in most of the scenar-
ios involving penetration of primitive shapes. Notably, the
demonstration results with YCB data shows our algorithm’s
potential to reduce computational load of collision detections
between smooth surfaces represented by fine mesh-based
models which has been a longstanding challenge for GJK-
EPA based methods. Although collision-free scenarios are
not extensively demonstrated in this paper, we also mention
that our method exhibits performance comparable to GJK
method in such cases.

For future works, we identify two key directions. Firstly,
we aim to develop methods for designing and fitting pre-
scribed support functions to known mesh-based models,
recognizing their importance for our algorithm’s performance
from the demonstration results. Secondly, we intend to
explore our method’s effectiveness in applications such as
simulation and planning leveraging resultant contact features.
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