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Abstract— We propose a novel real-time physically-accurate
simulation framework for the snap connection process. For
this, we first notice the peculiarities of the process, namely,
small/smooth deformation, stiff connector and segmented con-
tact. We then design our simulation to fully exploit these pecu-
liarities by adopting the following strategies: 1) the technique
of passive midpoint integration (PMI [1]), which allows for
stable simulation of arbitrarily light/stiff system by enforcing
discrete-time passivity; 2) linear finite element method (FEM
[2]) modeling, which is adequate to deal with the small snap
connector deformation while providing much faster speed as
compared to nonlinear FEM; 3) segmentation of the snap
connector FEM model and solving of each segment individually
with their coupling analytically eliminated, thereby, further
speeding up the simulation; 4) balanced model reduction (BMR
[3]) to further reduce the dimension of each segment purely
analytically without any prior experiment or simulation; and 5)
parallelized data-driven collision detection, which turns out to
further significantly speed up our simulation. Experimentally-
verified simulations are also performed to show the efficacy of
our proposed simulation framework.

I. INTRODUCTION

With the recent advancements of robotics technologies,
many attempts have been made to bring the robots into real-
world applications, including manufacturing/assembly and
household operations (e.g., [4]). One of processes frequently
recurring for those applications is the snap connection pro-
cess, where a component is forcefully pushed against another
component with a complementary geometry in such a way
that, by exploiting the slight deformation between them, the
two components can be slid and “snapped” together to join
with each other. This process is not only important for robotic
manufacturing/assembly (e.g., plastic switch box assembly,
inserting LAN cable, etc.), but also for household robotics
(e.g., tidying objects with snap-belts, placing dishwasher
stopper, etc.) - see Fig. 1.

Fast and accurate simulation of this snap connection pro-
cess would then be useful for the development of its model-
based robot control strategy, and also so would be the case
for the development of data-driven reinforcement learning
(RL [5]) strategy, which recently receives lots of attention,
yet, whose sim-to-real (e.g., [6], [7]) typically requires a vast
number of simulation data. Its real-time simulation would
even allow for the haptic rendering of the snap connection

The authors are with the Department of Mechanical Engineering, IAMD
and IER, Seoul National University, Seoul, Republic of Korea, 08826.
{mingg8,ljmlgh,yjm5181,djlee } @snu.ac.kr. Corresponding author: Dongjun
Lee.

Research supported by the Industrial Strategic Technology Development
Program (20001045) of the Ministry of Trade, Industry & Energy (MOTIE)
of Korea.

Fig. 1: Simulation snapshots of various real-world snap connection
processes

in VR (virtual reality [8]) or the development of shared-
autonomy RL strategy [9] for the snap connection.

In this paper, we develop a novel real-time physically-
accurate simulation framework for this snap connection
process. For this, we first notice the following peculiarities
of the process: 1) the connection deformation itself is not
so large; 2) the deformed connector shape is not of so high
spatial frequency; 3) the connector is fairly stiff to exhibit
fast snap closing motion (with “clicking”); and 4) typically
not all the parts of the connectors are under the contact at
the same time. We then render our simulation framework
to exploit these peculiarities s.t.,: 1) we derive our simula-
tion based on the technique of passive midpoint integration
(PMI [1]), which allows for stable simulation of arbitrarily
light/stiff system by enforcing discrete-time passivity; 2)
we choose linear finite element method (FEM [2]) instead
of nonlinear FEM [10], as it is enough to deal with the
small deformation of snap connection while providing much
faster speed; 3) we split the snap connector FEM model
into few segments and solve them individually with their
coupling analytically eliminated (see Sec. III-A), thereby,
speeding up the simulation time; 4) we adopt the balanced
model reduction (BMR [3]) to further reduce the dimension
of each segmented model purely analytically without any
prior experiment or simulation as required in the data-driven
model reduction methods (e.g., [11]); and 5) we devise a
parallelized data-driven collision detection module between
the connector surfaces in the form of multilayer perceptron
(MLP [12]) and with the help of graphics processing unit



(GPU), which turns out to further significantly speed up the
simulation.

There are numerous results in the fields of robotics and
computer graphics on the fast simulation of deformable
objects with multi-point contacts based on nonlinear FEM,
and their state-of-the-art results may be categorized by
optimization-based approaches (e.g., [13]-[15]) or inversion-
based approaches (e.g., [11]). However, all of them (e.g.,
[11], [13]-[15]) typically rely on an implicit way to ad-
dress nonlinear functions (e.g., stiffness) in their iteration
or integration, which is well-known to increase the damping
effect in the simulation (e.g., [1]), thus, making it impossible
for them to properly simulate the fast snap closing motion
(clicking) - a signature behavior of many snap connection
processes. Of course, an exact solver of the nonlinear func-
tions can remove this damping effect, yet, at the cost of
giving up the real-time speed of the simulation. Further,
the data-driven hyper-reduction method, as adopted in [11],
necessitates prior experiments/simulations to build the basis
for the simulation. In contrast to these, our proposed frame-
work can real-time simulate the fast snap closing motion
(thanks to the adoption of PMI) while not requiring any prior
experiments/simulations for the model reduction (thanks to
the adoption of BMR). We also believe that linear FEM is
enough for the snap connection process simulation, and, to
our knowledge, our proposed framework is the very first
result of the real-time snap connection process simulation
fully utilizing the peculiarities of the process.

The rest of the paper is organized as follows. Sec. II intro-
duces the snap connector setting and other basic theoretical
tools. Sec. III derives the FEM model of the socket connector,
its segmentation and model reduction via BMR. Sec. IV
presents the parallelized collision detection and the contact
solving procedure. Performance of our simulation is then
presented/analyzed in Sec. V, followed by some concluding
remarks in Sec. VL.

II. PRELIMINARY
A. Snap Connector Setting

We consider a snap connection, typically consists of a rigid
plug connector and a deformable socket connector, and plug
connector is forcefully squeezed into the complementary
geometry of the socket connector. Once the plug connector
is completely inserted, the structural features of the socket
connector prevent it from being plugged out. The socket
connector is modeled with FEM, which is discretized by
tetrahedrons. Since the deformation of each prong barely
affects each other, we separate them into two different FEM
models without interaction - see Fig.2. The dynamics of each
prong of the socket connector can then be formulated as

M3+ Cox + K (x) x = Jtext (1)

where x, € R¥ is the stacked deformation of the FEM
nodes, M, D, K € R3*3" are the mass, damping and stiffness
matrices respectively and f; .. € R3 is the external force
applied to each node (i.e. via the interaction with the plug

connector) when n, denotes the number of the nodes of each
model.

In (1), K; is dependent on x, so it should be calculated at
every time step. However, since small deformations can be
assumed in the snap connector, its behavior can be approxi-
mated by a linearized FEM model around the configuration
Xxo, which is then given by a linear time invariant (LTT)
dynamic system with a constant stiffness matrix. With the
bottom of the socket connector fixed to the floor, we can
reduce its dynamics by removing the columns and the rows
of M;,D; and K; about those fixed (bottom) nodes. The socket
connector dynamics is then given by:

MX+DX+KX:fexl (2)

where x € R is the displacement of the reduced FEM nodes,
M,D,K € R¥3" are the reduced matrices of M;,D;,K;,
fext € R3" is the external force on the nodes rather than the
fixed nodes and rn is the number of the reduced nodes.

On the other hand, the plug connector does not deform
much, so it can be assumed as a rigid object. Then, the dy-
namics of the plug connector can be written as M ,,IV,,; = Foxt»
where M), := diag ([mp113><3,1p1]) € RO*0, with mpr, I € R
being the mass and inertia of the plug connector, and V,; :=
[vpr;wpi| € RS, with v, w,; € R? being the linear and angular
velocity respectively, and F,,; € R® is the external wrench
exerted on the plug connector.

B. Passive Midpoint Integration

Passive midpoint integration (PMI) is a dynamics inte-
gration method that guarantees discrete time passivity [1].
We adopt this PMI here, since it allows us to real-time
simulate any arbitrarily stiff/light system behavior (e.g., fast
snap connection motion), while also generally improves the
stability of the simulation. A linearized version of the FEM
dynamics (2) is discretized via PMI as:

ka+lT*Vk + DV + K& = fr, V= Vk+12+vk — xk+;ka

3)
where *; := x(f;), v := % is linear velocity of the nodes
and T denotes the step size of time. Let us denote by % the
representative of x; for the duration ¢ € [T}, Ty+1]. Then the

dynamics (3) can be organized as
De=M"fi+vis “4)

where M:= 22 + D+KZ and vyp:= M~ (3Mv — Kxy).

If the plug connector is controlled via admittance con-
troller, PMI-discretized dynamics of the plug connector can
be written as

Vptk = M) Foxt = M (Fpri+Fer) + Vo (5)

where Vpl,f.k = M;ll (%Madvphk - Kaprl,k), Mpl = %Mad'f‘
Dag» Myg,Doy,Kaq € RS are the chosen mass, damper and
stiffness matrices in admittance dynamics and F, F; are the
contact wrench and actuation wrench (exerted by the robot
arm) respectively.



Thanks to the PMI, the dynamics (4) (and also (5)) satisfies
discrete-time energetic passivity in the sense that: VN > 0,

N
Y LT > Exy—Ey (6)
k=0

where Ej := %x,{Mkar %x,{ka is the total energy. This
passivity property of PMI allows us to choose arbitrarily
large K or small M. We use PMI discretization for our FEM
dynamics to ensure the discrete time passivity, so that the
snap connector with high Young’s modulus can be simulated
stably without artificial damping.

C. Balanced Model Reduction

Balanced model reduction (BMR) is an analytic
projection-based model order reduction method [16]. It
projects the state into a subspace with smaller dimension
which is well balanced between observability and control-
labilty. Unlike data-driven methods such as proper orthog-
onal decomposition (POD) [11], it does not require data,
which means that prior experiments or simulations are not
demanded. In this paper, we adopt this BMR to further
reduce the dimension of each segmented FEM model - see
Sec.III-B.

The FEM dynamics (2) can be transformed into first-order
state-space form with state X := [x;x] € R%", where n denotes
the number of the FEM nodes:

M 0], -D —K B

o [P el o
where u € R3 is the external force, B € R3*3_ ig the
selection matrix of the input nodes that can be subjected to
external forces, when n; being the number of input nodes,
and x = [03nx3n DBnx3n)X is an output of the system for
the BMR. In order to enforce the second-order structure
of the FEM model dynamics, we adopt the second-order
BMR result of [17] then, the controllability gramian and the
observability gramian, W, W, € R3%3n for the state x can be

computed as described in [16], and the transformation to the
reduced space can be written as

x=:Tz, T:=RTUA? (8)

where RTR :=W,,, UAN*UT := RW,,RT, UTU =UUT =1,
and A € R™" is composed of Hankel singular values of the
balanced gramian of Z. The BMR result can then be achieved
by choosing

2:=[21; 2] =PZER" )

where P = [Inrxnr Onrx(:;n_nr)] is the selection matrix of the
highest to the n"-th highest Hankel singular values.

III. SEGMENTATION WITH MODEL REDUCTION

We develop a segmentation technique with BMR to accel-
erate the simulation. Linear FEM dynamics have the advan-
tage that the inverse of the matrices for dynamics update can
be precalculated. With the precalculated matrices, the state
variables can be updated via matrix multiplication. Since the
computational complexity of matrix multiplication is about
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Fig. 2: Segmentation of the socket connector FEM model

O(n>*), we can effectively speed up this stage by splitting
the dynamics into several dynamics with a lower degree of
freedom. Moreover, BMR is applied to the segmentation
technique to further reduce the dimension and reduce the
computational cost. Recall that these are consistent with the
peculiarities of the snap connection process as stated in Sec.
L

A. Segmentation of Socket Connector

We propose an implicit spring-based segmentation frame-
work. The FEM model is geometrically divided into seg-
ments, which are connected with a strong spring. The socket
connector FEM model (2) is segmented into the nodes with
possible contact (e.g., nodes on the surface) and the nodes
with no contact (e.g., internal nodes). Although the socket
connector FEM model (2) can be divided into a number of
segments, here, for brevity, we give the derivation only for
the two-part segmentation. Define x; := [x;1;x12; - ;xlnl]T €
R¥ xp := [x215X205 ¢+ ;xznz]T € R3¥2, where x;, xp denote
the nodes of the two segments where x; being the nodes
with possible contacts, while x, not. Then, the dynamics of
each segment can be written as

M+ Diki + Kix; = H A+ fie, i=1,2  (10)

where A; € R3¢ is the constraint force (to be designed below)
of the i-th segment to ensure the joining between the two
segments and f;. is the contact force, H; € R¥<*¥i is the
selection matrix of the coupling nodes among the nodes in
the i-th segment and 7, is the number of the coupling nodes.
Since there is no contact on second segment, the contact
force of the second segment is zero: fo . = 0.

Then, following the PMI expression, (10) can be dis-
cretized at the k-th time step:

D =M (H Dig+ fiek) +vig (1
where v; ¢ == M;l (ZYA:[,- Vik —Kix,-,k) and M,' = 2711:],- +D;+

K,%. We also design the constraint force A; as a strong PMI-
based spring-damper connection s.t.,

(12)
13)

Mg = —dVej —keXep, Aok =—Aix
Ver :=HV1 g —HpVpp, Koy :=H Xy —HaXo

where X, Ver € R denotes the position error and the
velocity error at the coupling nodes respectively, and k., d, €
R can be interpreted as PD gain for constraint stabilization.
Thanks to our adoption of PMI for the simulation, we



can choose arbitrarily large d.,k. for the (virtually-rigid)
segmental coupling (12) without losing stability nor real-
timeness, even with zero damping (i.e., d. = 0 in the equation
(12), C; =0 in the equation (10)) or BMR - see Prop. 1.

The segmented FEM model (11), however, contains the
coupling force A, with other segmented model, thus, neces-
sitates us to solve dynamics of both segments simultaneously,
implying that the simulation speed-up would be unlikely.
To circumvent this necessity, here, we present a way to
analytically eliminate this coupling A, x, thereby, speeding up
the simulation. More precisely, by substituting A x (12) into
the equation about Vi (11), ¥ can be written about ¥ .
Then by substituting this ¥, ; into 7Ll7k(12) with the obtained
relation, A;; can be written only with V1. Then finally, by
substituting A, x into equation (11), ¥) ; can be written as a
linear mapping of the contact force fi . with the coupling
A1k now eliminated:

Vi =Af1ex Vi (14)

Here, since the mapping matrix A € R¥1>3 is a time-
invariant constant matrix, it can be pre-computed. As the
large-dimensional state update equation is split into two
equations with smaller dimensions via segmentation, par-
allelization is made possible and the computation time is
reduced.

This spring-based segmentation is equivalent to the orig-
inal FEM model if the constraints are strictly satisfied.
Since our system is passive even when the spring coefficient
between coupling nodes k. are large, we can effectively
ensure the tight connectivity by increasing k., which makes
the solution close to the original problem.

B. Segmentation with Balanced Model Reduction

Performing BMR for each segment further reduces the
state dimensions, thereby speeding up the computation. For
this BMR, we need to choose the input nodes, i.e., nodes that
can be subjected to external forces. This reduction can handle
the contact force by including the nodes with a possibility
of contact in the input nodes. These input nodes include the
contact nodes (i.e., where the contact with the plug connector
might occur, such as nodes on surfaces) and the coupling
nodes (i.e., where the constraint force A; can be exerted).

Let T; € R¥>3 be the transformation matrix to the
balanced subspace, and P; € R™ %31 be the selection matrix
of the modes with the n highest Hankel singular values of
each i-th object. The full-order state x; € R¥ is projected
to the reduced state z; € R", and it can be described by
Zi = PiTlflx,-. Also, the reconstruction of the full-order state
can be written as x; = 7}P,-Tz,-. With these relations, the state
update equation (11) can be rewritten for z;:

OIMiQi%ik = O bis+ O A +OF fion, i=1,2
where Q; := T,-Pf,b,;k = %v,’,k — Kix; ;. Also, the constraint
force A;x (12) can be expressed as same as (12) with

al A 2 Al A A
R :=H1OQ1 21k —HoQ0Zok, Vop:=H1Q121k —H2Q222k
(16)

5)

where v/, x/, is the velocity and position error at the coupling
nodes which is constructed in z—space. Following the steps
outlined above, 21 x and 2> can be written likewise as:

a7
(18)

2 =B1Zix+2 1k
2k =Bafier 21k

where B; € R2*"1 and B, € R"2*31 are constant matrices,
which can be precalculated. In addition to the advantage of
being split into dynamics equations of small dimensions that
can be parallelized, the dimensions of the state variables
have further decreased from 3n; to n, which improves the
computational speed.

Our segmentation with BMR method strictly satisfies
discrete time passivity without any artificial damping as
proved in Proposition 1.

Proposition 1. The segmentation method with BMR satisfies
discrete time passivity (i.e. (6) with E, = Zi(%vZkai7k +
%kaKx,;k) + %xz «kcxe ) even without artificial damping (i.e.,
d. =0 in the equation (16), C; =0 in the equation (10)).

Proof. The PMI-discretized dynamics without any damping,
with coupling force A;; substituted with (12), (16) can be
written as follows:

M0 M +K101Z1x

= fi—keH] (HiQ121x — H202%2)

My =1k L K> 002

= —kcH] (Hy02% 1 — H10121x)
By multiplying 727,07 and T%,,407 to the left side of (19)

and (20) respectively, equation about energy in z-space can
be deduced as:

1/.T T . T AT
Yi5 (&1 Qi MiQiZig+1 — 2, Q; MiQi
Zik+ ZZkH O'KiQiziks1 — ZZkQ,'TKiQiZi,k)

1 T T AT
= — ke ( (% ps1) Xopr — (K0 p) x/e,k) + T2, O1h

With the relation x; = Q;z;, the equation (21) in z-space can
be transformed into x-space and be simplified as:

19)

(20)

2n

%(VIZ:NMIIVI‘T.N — VZOMivi=0 -I—)CZ?:NK,'X,"N — x{OKixi70
+kc(xe,N)Txe,N — ke (xe,O)Txe,O) = Tﬁl,kfl
As (22) indicates that the work done by contact force is

exactly the same with the total energy (i.e., Ef) change, it
can be concluded that the passivity is satisfied. O

(22)

IV. CONTACT HANDLING
A. MLP-based Collision Detection

Collision detection between objects modeled by meshes
involves heavy computation, especially when the number of
the elements is large and the shape changes. To reduce the
computation time at this stage, we develop a multilayer per-
ceptron (MLP) based collision detection technique. Although
this collision detection is data-driven, it can be obtained
offline with computer-aided design (CAD) data, so no prior
experiments or simulations are required.

For this, let us first define a signed distance function [18]
of the plug connector, which determines the distance of a
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Fig. 3: Block diagram that represents the overall structure of the
collision detection process

input point p from the surface of the plug connector. It
has positive values for the points inside the surface, zero
for the points on the surface, and negative values for the
points outside the surface. If the distance function of the plug
connector is obtained, we can check whether or not collision
has occurred by simply checking the sign of the function
value of the points on the surface of the socket connector.
We approximate the distance function to MLP so that the
point-mesh collision detection algorithm can be simplified
into a neural network traversal process consisting of simple
calculations.

The MLP is trained with numerous randomly generated
points and their distance function values, which can be
computed as the minimum signed distance value from the
triangle on the surface of the plug connector to the point.
The network has total four layers including input and output
layer. The activation function for the input layer and the
hidden layers is ReLU function and tanh function is used
for the output layer.

Using this MLP-based point-mesh(A) collision detection,
mesh(A)-mesh(B) collision detection can be performed by
checking whether numerous points on mesh B are outside
or inside the other mesh A. At every time step, a number
of points p = [py;---;pn] are obtained by interpolating
FEM nodes of the socket connector (i.e., X1 € R31) and
transforming the points into the plug connector coordinate.
Then these transformed points pass through MLP, and the
distance function value of each point d = [d;,- - ,dy| can be
achieved. With the sign of the values, the contact points can
be chosen.

Moreover, since the normal vectors can be interpreted as
the gradients of the signed distance functions, the normal
vectors of the contact points can be achieved by passing
through the differentiated MLP. The whole process of de-
tecting the contact points and obtaining normal vectors is
presented in Fig. 3.

As we generate numerous points in the process of collision
detection, several points that are close to each other can
be detected as contact points. These points might induce
numerical instability while calculating contact force [19] and
slow down the calculation. We adopt k-means clustering [20]
to classify the obtained contact points into a predetermined
number of clusters, and use the point which has the largest
penetration in each cluster as a representative point.

B. Contact Solver

The next step is to calculate the contact force on the
obtained contact points. We solve the contact force based
on the maximal dissipation principle [21] with the obtained
contact points and normal vectors.

Let us first define the contact coordinate of the j-th
contact point which is formed with the normal vector and
the tangential plane of the triangular mesh that contains
the contact point. The relative velocity between the two
connectors in the contact coordinate is required for the
contact solver. The contact solving process is in the following
order: 1) compute the velocity of the contact points on the
socket connector; 2) compute the velocity of the contact
points on the plug connector; then 3) formulate the contact
optimization problem with the relative velocity in the contact
coordinate.

1) Velocity of the contact points on the socket connector:
By using linear interpolation along each triangular surface
mesh with barycentric coordinates, the velocity of the contact
point can be written as a linear combination of the velocity
of the nodes:

V;,k = ]Svl,k (23)

where, superscript ¢ means that the property is described in
the contact coordinate, V¢ vk € R3" is the stacked velocity of
the contact points on the socket connector, m is the number
of the contact points, and J; € R¥3" maps the FEM nodes
into the contact coordinate. Likewise, the force of the contact
points are interpolated with the nodal force as f7, = JI Sie k-
Finally, with the relation proposed in (14) can be transformed
to the contact coordinate as

9 = AT fE +Tv1pi 24)

2) Velocity of the contact points on the plug connector:
Similarly, the stacked velocity of the contact points on the
plug connector ¥ bk € R also can be expressed as linear
mapping of the ve1001ty of the plug connector:

Vork = IptVpik (25)

where, J, € R3¥*6 is the linear mapping between the

velocity of plug connector and the velocity of contact points,
and Vi = [vpriwpi] € RC. Then by transforming (5) into
contact coordinate with (25), velocity-force relation of plug
connector in contact coordinate can be written as:

TtV e+ T (M T+ Vi)

Then, the relative velocity of contact points on the socket
connector about the plug connector ﬁ;;k = 1?‘1'7,( — ﬁ;l,k ((24) -
(26)) can be computed as

ﬁ;k = Cf]f + Vi fk 27

JAT] + JuM T and vy pgoi= Jovipx -

o1 (M Fpi+Voi sk ). The delassus operator C should be

calculated at every time step, but the dimension is 3m by
3m, where m is the number of clustered points.

where C =



3) Calculating Contact Force: With the relation de-
scribed in (27), we compute the contact force that satisfies
Coulomb’s friction and Signorini condition. If the Delassus
operator has good matrix condition (e.g., mass-spring sys-
tems with diagonal mass and stiffness matrices), projective
Gauss-Seidel (PGS) [22] method will show good conver-
gence. However in the case of the snap connection process,
since the contact force is applied from two symmetrical
directions, the condition of the Delassus operator is bad and
the PGS method does not converge well. As an alternative,
we use maximal dissipation algorithm [21] which finds the
contact force that maximizes the dissipation. The contact
optimization problem can then be written as

T C
min (ﬁ2k> fk(t) = (Cflf+vr,f'7k)Tf/f(t)
by
subject to £ ) < £

iy =0

(28)

where superscript (n), () mean normal and tangential com-
ponent of the vector respectively, v§ := vf) w1t svi 0= 2\?r, et
(e—=1) vk, € is the coefficient of restitution, and u is the
coefficient of friction. In addition, d = [d};--- ;d,] and d;
denotes the distance value of the j-th contact point calculated
in Sec. IV-A. The physical meaning of the first constraint
is the Coulomb’s friction cone and the second constraint
is the Signorini condition in velocity level compensated
for penetrations that have already occurred before being
detected.

Hwangbo et al. [23] proposed a method to substitute a
single contact problem into a simple line search problem
and used the bisection method to solve it. By solving each
single contact problem and updating the total contact force
with successive over relaxation (SOR), it efficiently solves
the multi-contact problem. Our contact formulation is found
to have the same optimization formula, that is finding the
point with the minimal Mahalanobis norm to the objective
point in a feasible set of ellipses. Therefore, we adopt the
bisection method for each single contact and SOR method
to compute the multi-contact force.

V. SIMULATION ANALYSIS
A. Stability With High Stiffness

To show the better stability property of our linear FEM-
based simulator as compared to the nonlinear FEM ap-
proaches, we performed the comparison between our sim-
ulator and the corotational FEM [24], which is widely used
for FEM simulation, both with high Young’s modulus. Two
models are integrated with PMI. As proved in Proposition
1, our framework can stably simulate the snap connection
behavior even when the damping term is removed (i.e.,
D; =0 in the equation (10)). However, although the frame-
work is analytically stable, numerical error may take place,
which implies that small damping is required. Unlike our
framework, if the material is very stiff (i.e., high Young’s
modulus), typically linearized dynamics of the nonlinear
FEM can diverge due to the dynamics linearization error
regardless of the integration method.
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Fig. 4: Snapshots of the simulation results: nonlinear FEM (with
geometric nonlinearity and linear material) (top) and proposed
framework (bottom).

Snapshots of the simulation results of this nonlinear FEM
and our proposed simulation model are presented in Fig.
4. Our method is simulated without any artificial damping
and the corotational FEM is simulated with small Reyleigh
damping - D= oM+ BK, «a=1.0x107*, B=1.0xle—5.
We can see that our proposed simulator can stably simulate
the snap connection process with high stiffness (E = 164.7
Pa) even without damping, whereas the nonlinear FEM
simulator just diverges.

B. Computation Time Analysis

[ | Original FEM [ Segmentation | BMR ]

] 165 6

Coarse Mesh 663 84 25
. 876 6
Fine Mesh 1266 465 96

TABLE I: The dimensions (i.e., number of the nodesx3) of: 1) the
original snap connector FEM models with coarse or fine meshes;
2) their segmented models; and 3) their reduced models via BMR.

Here, we analyze the computation time of our proposed
simulator and how effective each adopted idea is to speed up
the simulation. We implement the simulator with C++ and
parallelize the collision detection with CUDA developed by
NVIDIA. TABLE. I shows the dimensions (i.e., number of
the nodesx3) on each stage for each finely and coarsely
divided FEM model. When the original mesh is discretized
more finely, the dimension of the state is reduced by greater
amount.

With the reduced dimension and the GPU-based collision
detection, the simulation frequency (i.e. number of time steps
calculated in 1 second) was increased by 8.5-9.5 times faster
for different sizes of meshes. Fig. 5 shows the frequency
- average number of time steps calculated per second -
of the simulation of each model. Exploiting data-driven
collision detection, segmentation and BMR has enhanced
the simulation frequency. In the case of the coarse mesh,
data-driven collision detection affected the simulation time
remarkably, whereas, in the case of the fine mesh, the effect
of segmentation and reduction was huge.



2500 250

2000

1500

1000

frequency [Hz]
frequency [Hz]

F N
ARoRE

500

0 0
Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

(a) Coarse Mesh (b) Fine Mesh
Fig. 5: Simulation frequency comparison between 4 models - Model
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collision detection; Model 3: Model 2 with segmentation; and
Model 4: Model 3 with BMR.

Fig. 6: Experiment setup consists of FRANKA robot manipulator,
ATI gamma force/torque sensors, and snap connectors

C. Simulation Result with Experimental Data

To verify the framework, we implement the framework
with C++ and compare the experimental results with the
simulations. We print snap connector models with a 3D
printer with ABS filament.

1) Parameter Identification: We identify the material pa-
rameters of the socket connector and the friction coefficient
between the two connectors to match our simulation frame-
work to the real world.

We exert force on the socket connector and observe the
deformation of each node of the FEM model. The force is
applied by a robot arm (FRANKA EMIKA Panda) and two
ATI gamma force/torque sensors (FT sensor) are attached
below the socket connector and between the robot arm and
the plug connector. Deformation of each snap connector
node, represented as xp;c, is measured by open source digital
image correlation (DIC) algorithm [25]. We move the plug
connector slowly (i.e. quasi-static), which makes justifiable
to simplify the FEM dynamics (2) as Kx = f. Then, we
can compute the nodal displacement by x = K~!f,,, when
the input force is known, remarking that the stiffness matrix
K is nonsingular. The normal vector of each mesh is required
to calculate the force from the measured force with the FT
sensor. To obtain the normal vector of the deformed socket
connector surface, xpjc is used. The objective function is
defined as:

a‘rgrnin”xDlC - Kﬁlfext”
E

Here we adopt the known value of the Poisson’s ratio of
ABS (v = 0.35) to parameterize stiffness matrix K only
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Fig. 7: Comparison of the force measured with FT sensor and that
calculated from proposed simulation.

with the Young’s modulus E, which makes the optimiza-
tion problem more efficient. The solution is obtained by
MATLAB fmincon function with interior-point method. As
a result, we achieve E = 1.6476 x 10® Pa which is plausible
under the known range of the material property. Note that
the parameter identification is irrelevant with the proposed
methods - segmentation, model reduction and MLP-based
detection.

To construct the contact model, the friction coefficient
between the two connectors should be identified. The socket
connector, with a pendulum on the top, is placed on the
plug connector, and the force is exerted horizontally. Then
we measure the force at the moment when the socket con-
nector starts to move. With the measured force, the friction
coefficient can be identified as u = f,/W;, where f} is the
measured horizontal force and W; is the weight of the socket
connector. Ultimately, we achieved pt = 0.163.

2) Comparison with Experiment: To compare our simula-
tion with the experiment, we first conduct snap connections
using the admittance control of the robot. Then the simula-
tion is performed using the same control input (i.e. desired
position of the plug connector) with the experiment. Here,
time step is used as 1 ms. Since the friction in robot arm
joints, which is difficult to model in simulation, leads to
unavoidable differences between simulation and experiment,
the admittance gain was set to the value that best fits the
experiment.

With the FT sensor attached below the socket connector,
we measure the force exerted to the floor and compare it with
the calculated force in the simulation. The force applied to
the fixed nodes can be directly calculated in simulation using
the discretized FEM dynamics about the fixed nodes as:

Dak =Mypcfre+Va sk (29)

where fo = %fo + Dfx + %fo, Vafk =
M;x] (3Mfwax —Kpexar), and My, Dy, Ky, are mass,
damping and stiffness matrices consists of the removed rows
from M;,D; and K;. Fig. 7 illustrates the comparison of the
measured force from the experiment and that calculated
from proposed simulation. The root mean square error of
the norm of the force was 4.936 N, where the maximum

force was 48.159 N.
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(b) LAN cable connector-like geometry

Fig. 8: Calculated force exerted on the floor for two different snap
connectors.

D. Simulation of Different Type Connectors

Our framework was tested with connectors with different
geometries and materials to validate the robustness. We mod-
eled two connectors which imitates LAN cable connector
and plastic leakage prevention cap. The material parameter
of the former one is E = 50.0 MPa, v = 0.35 and latter
one is E = 100 MPa, v = 0.1. As shown in Fig. 8, the
proposed framework stably simulates other snap connectors
with different geometries and material parameters.

VI. CONCLUSION

We present a real-time snap connection framework that
matches real-world physics. For this, segmentation and BMR
are conducted to reduce the dimension of the states. More-
over, data-driven collision detection using GPU paralleliza-
tion is proposed to speed up the detection. As a result, we
achieve the frequency of the simulation up to 2.2 kHz. The
devised framework is then verified through comparison with
the experiment and it is confirmed that the accuracy was not
lost in the process of reduction.

Some future research directions include: 1) using different
frames for each segment so that large variations can be
handled while maintaining the advantages of the framework;
2) adopting the segmentation framework in nonlinear FEM
simulations for more general objects; 3) make our simulation
algorithm in an open source packet.

REFERENCES

[1] M. Kim, Y. Lee, Y. Lee, and D. Lee. Haptic rendering and interactive
simulation using passive midpoint integration. International Journal
of Robotics Research, 36(12):1341-1362, 2017.

[2] T. JR Hughes. The finite element method: linear static and dynamic
finite element analysis. Courier Corporation, 2012.

[3]
[4]
[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

K. Willcox and J. Peraire. Balanced model reduction via the proper
orthogonal decomposition. AIAA Journal, 40(11):2323-2330, 2002.
ABB Robotics. Assembly application of electrical sockets with yumi-
irb14000.

Andrychowicz OM., Baker B., Chociej M., and et al. Learning
dexterous in-hand manipulation. International Journal of Robotics
Research, 39(1):3-20, 2020.

J. Matas, S. James, and A. J. Davison. Sim-to-real reinforcement
learning for deformable object manipulation. Proceedings of Machine
Learning Research (CoRL), 87:734-743-23, 2018.

D. Son, H. Yang, and D. Lee. Sim-to-real transfer of bolting tasks with
tight tolerance. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2020.

Y. Lee, M. Kim, Y. Lee, J. Kwon, Y. Park, and D. Lee. Wearable
finger tracking and cutaneous haptic interface with soft sensors for
multi-fingered virtual manipulation. [EEE/ASME Transactions on
Mechatronics, 24(1):67-77, 2018.

S. Reddy, A. Dragan, and S. Levine.
reinforcement learning. 2018.

T. Belytschko, W. Liu, B. Moran, and K. Elkhodary. Nonlinear finite
elements for continua and structures. John wiley & sons, 2013.

O. Goury and C. Duriez. Fast, generic, and reliable control and simu-
lation of soft robots using model order reduction. IEEE Transactions
on Robotics, 34(6):1565-1576, 2018.

S. Haykin. Neural Networks and Learning Machines.
Education India, 2010.

M. Ly, J. Jouve, L. Boissieux, and F. Bertails-Descoubes. Projective
dynamics with dry frictional contact. ACM Transactions on Graphics,
39(4):57-1, 2020.

C. Brandt, E. Eisemann, and K. Hildebrandt. Hyper-reduced projective
dynamics. ACM Transactions on Graphics, 37(4):1-13, 2018.

M. Macklin, K. Erleben, M. Miiller, N. Chentanez, S. Jeschke, and
V. Makoviychuk. Non-smooth newton methods for deformable multi-
body dynamics. ACM Transactions on Graphics, 38(5):1-20, 2019.
J. Yoon, 1. Hong, and D. Lee. Passive model reduction and switching
for fast soft object simulation with intermittent contacts. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
6963-6970, 2019.

D. Meyer and S. Srinivasan. Balancing and model reduction for
second-order form linear systems. [EEE Transactions on Automatic
Control, 41(11):1632-1644, 1996.

M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-
pathi, A. Fuhrmann, M-P Cani, F. Faure, N. Magnenat-Thalmann,
W. Strasser, et al. Collision detection for deformable objects. In
Computer graphics forum, volume 24, pages 61-81, 2005.

A. Rocchi, B. Ames, Z. Li, and K. Hauser. Stable simulation of
underactuated compliant hands. In IEEE International Conference on
Robotics and Automation, pages 4938-4944, 2016.

A. K. Jain. Data clustering: 50 years beyond k-means.
recognition letters, 31(8):651-666, 2010.

T. Preclik, S. Eibl, and U. Riide. The maximum dissipation prin-
ciple in rigid-body dynamics with inelastic impacts. Computational
Mechanics, 62(1):81-96, 2018.

P. Horak and J. Trinkle. On the similarities and differences among
contact models in robot simulation. IEEE Robotics and Automation
Letters, 4(2):493-499, 2019.

J. Hwangbo, J. Lee, and M. Hutter. Per-contact iteration method for
solving contact dynamics. IEEE Robotics and Automation Letters,
3(2):895-902, 2018.

M. Miiller and M. H. Gross. Interactive virtual materials. In Graphics
interface, volume 2004, pages 239-246, 2004.

J. Blaber, B. Adair, and A. Antoniou. Ncorr: open-source 2d
digital image correlation matlab software. Experimental Mechanics,
55(6):1105-1122, 2015.

Shared autonomy via deep

Pearson

Pattern



