
Narrow Passage Path Planning using
Collision Constraint Interpolation

Minji Lee, Jeongmin Lee and Dongjun Lee†

Abstract— Narrow passage path planning is a prevalent prob-
lem from industrial to household sites, often facing difficulties
in finding feasible paths or requiring excessive computational
resources. Given that deep penetration into the environment can
cause optimization failure, we propose a framework to ensure
feasibility throughout the process using a series of subproblems
tailored for narrow passage problem. We begin by decomposing
the environment into convex objects and initializing collision
constraints with a subset of these objects. By continuously
interpolating the collision constraints through the process
of sequentially introducing remaining objects, our proposed
framework generates subproblems that guide the optimization
toward solving the narrow passage problem. Several examples
are presented to demonstrate how the proposed framework
addresses narrow passage path planning problems.

I. INTRODUCTION

Path planning is a fundamental and crucial aspect of
robotic tasks. Path planning problem in narrow passage or
cluttered environment remains particularly challenging with
active researches having been conducted even to this day ([1],
[2], [3], [4]). Such environments are not merely common in
industrial settings, but also frequently encountered in house-
hold scenarios, such as tight assembly tasks or navigating
cluttered spaces.

Historically, most path planning techniques have leaned on
sampling-based methods such as rapidly-exploring random
tree (RRT) [5] or probabilistic roadmap (PRM) [6]. While
these methods offer certain advantages, such as convenient
problem formulation and probabilistical completeness [7],
they struggle in narrow passages, due to sampling inefficien-
cies [2].

More recently, optimization-based path planning has
emerged as another promising approach ([8], [9], [10], [11]),
formulating the path planning problem as an optimization.
These methods are able to quickly converge to paths with
low cost in terms of path length, smoothness, or other task-
specific metrics, by leveraging gradient information and,
in some cases, second-order information. They also offer
flexibility in integrating various cost and constraint factors.
Despite their advantages, as the problem is inherently non-
convex when collision avoidance is considered, they can get
stuck in local minima and fail to find an optimal or even
feasible path without a sufficiently good initialization [10].

This research was supported by Samsung Research, the National Research
Foundation (NRF) funded by the Ministry of Science and ICT (MSIT) of
Korea (RS-2022-00144468), and the Ministry of Trade, Industry & Energy
(MOTIE) of Korea (RS-2024-00419641).

The authors are with the Department of Mechanical Engineering, IAMD
and IOER, Seoul National University, Seoul, Republic of Korea, 08826.
{mingg8,ljmlgh,djlee}@snu.ac.kr. Corresponding author: Dongjun Lee.

Fig. 1: Optimization results for manipulator path planning
during tool extraction from a narrow gap, utilizing the
proposed collision constraint interpolation framework.

This difficulty is particularly pronounced in narrow pas-
sages, because deep penetration is more likely to occur.
There are two major factors that make the deep penetration
problematic for trajectory optimization. First, contact fea-
tures such as witness points, penetration depth, and contact
normal are well-defined only when there is either no contact
or minimal penetration [12]. Secondly, in situations of deep
penetration, especially when the path passes through the
medial axis [13], the contact normals between adjacent
waypoints may become inconsistent, thus they may push the
solutions in opposite directions, making it difficult to escape
from infeasibility [10]. In essence, within these narrow
passages, traditional path planning methods often fall short,
struggling to find feasible paths or consuming excessive
computational resources.

In this paper, we propose addressing the problem through
a novel optimization-based method with a series of subprob-
lems tailored for narrow passage problems. We first relax
the collision constraints so that we can initially start from an
expanded free space, and, as the subproblems proceed, the
constraints are gradually tightened back to their original form
(See Fig. 1). This enables continuous refinement of the path,
guiding it toward a feasible solution of the narrow passage
problem while preventing deep penetration issues.

More specifically, we start by decomposing the environ-
ment into convex objects. Starting with a few initial objects,
the remaining objects are then progressively introduced and
augmented into the environment. The addition is carried out
through a certain interpolation between the Signed Distance
Functions (SDFs) of newly-added and existing objects, in
such a way that the path is continuously morphed into the
final solution of the narrow passage problem without any
tearing of the path, by considering the homotopy.

ar
X

iv
:2

41
0.

20
69

7v
1

 [
cs

.R
O

]
 2

8
O

ct
 2

02
4

(a) (b) (c)

Fig. 2: Given an environment with convex objects V colored
in gray, a set of green convex objects forms leaf set in (a),
and not in (b) or (c). In (b), one of the green object violates
Condition 1.1 by intersecting with two objects in V . In (c),
the green objects violate Condition 1.2 by intersecting with
each other.

The paper is structured as follows: In Sec. II, we intro-
duce our collision constraint interpolation framework. Sec.
III details the optimization-based path planning algorithm
using this collision constraint interpolation. Path planning
examples and comparative analyses are presented in Sec. IV,
followed by conclusions in Sec. V.

II. COLLISION CONSTRAINT INTERPOLATION

A key insight of our paper is that maintaining feasibility
throughout optimization process is crucial for preventing the
path from getting stuck in local minima, as it can avoid deep
penetration, which is problematic for the optimization. To
achieve this, we propose a series of subproblems that initially
simplify the collision constraints to create a wide free space,
and then gradually revert it to the original collision constraint
as the subproblems progress, while guiding the path to the
solution of narrow passage problem.

To implement this framework, we first decompose the
environment into a collection of convex objects Vtot =
{v1, · · · , vnt

}, where nt is the number of the objects in
Vtot. Each object vi represents the space it occupies in the
environment. The environment is initialized with a subset of
these objects Vinit ⊆ Vtot. Each subproblem is defined by
gradually interpolating collision constraints of the sequence
as new objects are progressively introduced into the environ-
ment. At each sequence, a leaf set is introduced, satisfying
following condition.

Condition 1 (Leaf set): Let V l be a set of convex objects
with respect to a connected set of convex objects V . The set
V l is a leaf set if it meets the following condition:

1) Each element of V l intersects with exactly one object
from V

2) No elements in V l intersect with each other.
Fig. 2 illustrates a leaf set (Fig. 2a) and counterexamples
(Fig. 2b, Fig. 2c). Note that the gluing of the leaf set neither
creates nor removes cycles, thereby preserving the homotopy
of the environment.

To achieve interpolated collision constraints during the
sequential addition of the leaf sets, we first examine the
properties of SDF. Based on these properties, we define SDF
interpolation between two convex objects, and propose an
interpolation scheme to be applied across the sequences.

Fig. 3: Object interpolation process using proposed shaping
function (5) with η = 40 (top row), η = 15 (middle row)
and linear interpolation η → 0 (bottom row).

A. Signed Distance Function

A signed distance function (SDF) for an object v is a
function that quantifies the distance from any point x ∈ R3

to the surface of an object, formally defined as:

SDFv(x) =

− inf
y∈∂v

d(x− y) if x ∈ v

inf
y∈∂v

d(x− y) else

where ∂v is the boundary of v, and the metric d is the com-
monly used Euclidean distance. For a collection of objects
V = {v1, · · · , vn}, the combined SDF can be represented
as:

SDFV(x) := min(SDFv1(x), · · · ,SDFvn(x))

Let us define an occupied space of a function g(·) : R3 →
R as O(g) = {x ∈ R3 | g(x) ≤ 0}. If follows that the
occupied space of a SDF of a set of objects, denoted as OV ,
is exactly itself:

OV := O(SDFV) =
⋃
v∈V

v

Also, following is satisfied for any functions g1(·), g2(·) ∈
R3 → R:

O(min(g1, g2)) = O(g1) ∪ O(g2) (1)

B. Smoothed SDF Interpolation between Convex Objects

We first define an interpolated SDF between two inter-
secting convex objects v1 and v2 as:

SDFα
v1→v2(x) := (1−α)f(SDFv1(x))+αf(SDFv2(x)) (2)

where α ∈ [0, 1] is an interpolation variable and f : R→ R
is a shaping function that satisfies the following condition.

Property 1 (Shaping function): A shaping function f sat-
isfies following conditions:

1) f(0) = 0
2) f is non-decreasing, and convex

Let us define an interpolated object, vαv1→v2 , such that,

vαv1→v2 := O
(
SDFα

v1→v2

)
(3)

The following proposition outlines the properties of the
interpolated object derived from any shaping function that
satisfies Property 1.

Proposition 1: If two convex objects v1 and v2 intersect
(i.e., v1∩v2 ̸= ∅), their interpolated object vαv1→v2 as defined
by (3) is convex and satisfies:

v1 ∩ v2 ⊆ vαv1→v2 ⊆ v1 ∪ v2 (4)

Proof: Since SDF of convex object is convex [14], both
SDFv1(·) and SDFv2(·) are convex functions. Considering
the properties of the shaping function, which are convex and
non-decreasing, f(SDFv1(·)) and f(SDFv2(·)) also retain
convexity.

Moreover, the function SDFα
v1→v2(·), defined as a non-

negative linear combination of the convex functions, inher-
ently retains convexity. Given that the level sets of a convex
function are convex, it follows that the occupied space of
SDFα

v1→v2 is convex. Consequently, the interpolated object
vαv1→v2 is also convex.

For any x ∈ R3 that is in v1 ∩ v2, following is satisfied:

SDFv1(x) ≤ 0 and SDFv2(x) ≤ 0,

⇒ SDFα
v1→v2(x) ≤ 0

Moreover for arbitrary x ∈ vαv1→v2 , following is satisfied:

SDFα
v1→v2(x) ≤ 0

⇒ SDFv1(x) ≤ 0 or SDFv2(x) ≤ 0

Therefore, v1 ∩ v2 ⊆ vαv1→v2 ⊆ v1 ∪ v2 is satisfied.
The shaping function f(·) is designed to smooth the

surface of the interpolated object. For instance, if we do not
use this shaping function (i.e. f(x) = x), some sharp ridges
would be formed, which correspond to the medial axis [15]
(See the bottom row of Fig. 3). These sharp ridges can cause
abrupt changes in the contact normals between adjacent
waypoints, which is highly undesirable for the optimization.

Such sharp ridges can be mitigated by using a properly-
designed shape function f(·). One example is modeled using
an exponential formula, which adheres to Property 1:

f(x) =
1

η
(exp (ηx)− 1) (5)

where η ∈ R+ acts as a scaling factor. Fig. 3 visually
demonstrates how varying values of η affect the shape of
the interpolated object. As η increases, the interpolated object
becomes increasingly smoothed, eliminating the sharp ridges.

Fig. 4: Illustration of two sequential processes of gluing leaf
sets to the environment.

C. Homotopy Preserving Collision Constraint Interpolation

Consider a k-th sequence of adding a leaf set V l
k =

{vl1, · · · , vlnl
}, where nl is the number of objects in the

leaf set, into a current environment characterized by objects
Vk = {v1, · · · , vn} ⊆ Vtot, where n is the number of
objects in current environment. Note that n and nl vary with
the sequence k, but for brevity, we omit this dependence
in the notation. Each convex object vlj intersects uniquely
with an object vσ(j) ∈ Vk, where σ(·) maps the index of
the intersecting object in Vk. See Fig. 4 for the graphical
illustrations. Then, this sequence can be interpolated using
the interpolation variable α as:

SDFα
Vk+Vl

k
(x) := min

(
SDFVk

(x),SDFα
1 (x), · · · ,SDFα

nl
(x)

)
(6)

where SDFα
j (x) := SDFα

vσ(j)→vl
j
(x). When α = 0, the

occupied space is exactly OVk
, and at α = 1, it expands

to OVk∪Vl
k
:

SDFα
Vk+Vl

k
=

{
SDFVk

if α = 0

SDFVk∪Vl
k

if α = 1

As shown in Fig. 5, preserving homotopy of the occupied
space is essential during this interpolation; if lost, the path
may stuck in an infeasibility, unable to retain within the
free space through any continuous deformation (Fig. 5a).
Conversely, if homotopy is preserved, the path is more likely
to be continuously updated to stay within the free space (Fig.
5b).

From (1), the occupied space of the interpolated collision
constraint (6) can be characterized using the interpolated
objects as:

O
(

SDFα
Vk+Vl

k

)
= OVk

∪
nl⋃
j=1

vαvσ(j)→vl
j

= OVk
∪

nl⋃
j=1

{
vαvσ(j)→vl

j
∩ (vσ(j) ∪ vlj)

}
(7)

= OVk
∪

nl⋃
j=1

{
vαvσ(j)→vl

j
∩ vlj

}
(8)

The transformation to (7) is derived from the property (4),
while (8) is derived from the fact that vσ(j) ∈ Vk. Let
us denote vαj := vlj ∩ vα

vσ(j)→vl
j

for simplicity. Then, the

(a) The path cannot stay within the free space with continuous
updates, due to the change in homotopy.

(b) Using our framework, the path can be maintained in free
space with continuous update, leading to successful path plan-
ning.

Fig. 5: Comparison of homotopy equivalence and the corre-
sponding path planning outcomes when performing interpo-
lation using two distinct formulas.

occupied space (8) can be interpreted as a gluing of a set
{vα1 , · · · , vαnl

}. The set {vα1 , · · · , vαnl
} is a leaf set, since each

vαj does not intersect with one another, and intersects with
only vσ(j) among Vk:

vαi ∩ vαj ⊆ vli ∩ vlj = ∅
vαj ∩ vσ(j) ⊇ vlj ∩ vσ(j) ̸= ∅
vαj ∩ vσ(i) ⊆ vlj ∩ vσ(j) = ∅

for all i ̸= j. Since gluing of a leaf set do not create or delete
cycles, thus the occupied space (8) preserves homotopy with
Vk for all α ∈ [0, 1]. Consequently, the homotopy of the
occupied space for the interpolated collision constraint (6) is
preserved throughout the interpolation.

D. Generation of Leaf Set Sequences

The initial objects and the sequence of the additions can be
determined automatically using Algorithm 1. Starting with
the total set of objects, the algorithm identifies a leaf set
V l
k at each iteration, where k represents the current step of

sequence. The leaf set is formed by adding objects which do
not intersect with each other but uniquely intersect with V
(Line 7-11). This subset V l

k is then removed from V (Line
12), and the process repeats with the next value of k (Line
13) until no further leaf sets can be identified. The final
sequence of leaf sets is established by reversing the order
of V l

k (Line 15) about k. The remaining objects V , after all
leaf sets have been removed, become the initial objects Vinit
(Line 16).

This algorithm is designed to leave as few objects as
possible as initial objects. However, if many objects need

Algorithm 1 Sequences of leaf sets

1: Input: Decomposed objects Vtot
2: Output: Sequence of leaf sets V l, Initial objects Vinit
3: V ← Vtot
4: k ← 1
5: repeat
6: Initialize V l

k = []
7: for v ∈ V do
8: if V l

k ∪ v satisfies Condition 1 then
9: Append v to V l

k

10: end if
11: end for
12: V ← V \ V l

k

13: k ← k + 1
14: until |V l

k| = 0 or |V| = 0
15: V l = {V l

k,V l
k−1, · · · ,V l

1}
16: Vinit = V

Algorithm 2 Narrow passage path planning

1: Input: Total set of nodes Vtot
2: Determine V l,Vinit from Alg. 1
3: Initialize environment V1 = Vinit and path X1:T

4: for k = 1, · · · , |V l| do
5: α = 0
6: while α < 1 do
7: Refine the path X1:T by optimization (10)
8: α← min(α+∆α, 1)
9: end while

10: Vk+1 = Vk ∪ V l
k

11: end for
12: return Vseq

to be introduced sequentially, the optimization process may
take longer. In such cases, the user can choose not to include
all possible objects in the leaf set in Lines 7-11, which will
not affect the subsequent path planning framework.

III. PATH PLANNING USING
COLLISION CONSTRAINT INTERPOLATION

A typical path planning optimization can be formulated
as:

min
X1:T

T−1∑
t=1

∥Xt+1 −Xt∥2

s.t. min
x∈W (Xt)

SDFV(x) ≥ d̂, t = 1, · · · , T
(9)

where X1:T is the optimization variable representing configu-
ration at the t-th timestep, T is the total number of waypoints,
W (Xt) is the surface of the robot at each waypoint Xt, and
d̂ ∈ R+ is the predefined safe distance. Here, we aim to
generate a series of subproblems tailored to narrow passage
problem using the collision constraint interpolation in Sec.
II.

The overall path planning algorithm is explained in Al-
gorithm 2. We first decompose the environment into a set

of convex objects, and initialize the path by ignoring the
constraint of (9). Then, the leaf set addition sequence and
initial objects can be identified using Algorithm 1. Then,
the subproblems are defined by substituting the collision
avoidance constraint in (9) with the interpolated collision
constraint:

min
X1:T

T−1∑
t=1

∥Xt+1 −Xt∥2

s.t. min
x∈W (Xt)

SDFα
Vk+Vl

k
(x) ≥ d̂

(10)

For each k-th sequence, α is gradually increased from 0 in
increments of ∆α, creating a series of subproblems. In each
subproblem, the collision constraint becomes progressively
stricter, guiding the optimization toward a solution to the
narrow passage planning problem (9).

To solve the subproblem (10), we employ Sequential
Quadratic Programming (SQP) by linearizing the problem.
The resulting Quadratic Programming (QP) at each iteration
is solved using SubADMM [16], which is particularly adept
at stably and efficiently solving conflicting constraints com-
mon in narrow passage path planning.

We need to detect the collision to solve the problem (10).
Even though the environment changes with α, by leverag-
ing the SDF interpolation, we can efficiently manage the
collision detection. By separating the interpolated collision
constraint (6) into two parts, we can express the constraint
as follows:

SDFV(x) ≥ d̂ (11)

SDFα
vσ(j)→vl

j
(x) ≥ d̂, j ∈ {1, · · · ,m} (12)

where (11) represents the collision constraint for the current
environment V and (12) corresponds to the collision con-
straint for the interpolated convex objects.

The collision detection for the interpolated convex objects
(12) can be performed using the Frank-Wolfe algorithm
[17]. That is, from the given triangular mesh of the robot
W (Xt) = {W1, · · · ,Wnw

} at waypoint Xt, collision detec-
tion can be conducted as:

x∗ = argmin
x∈Wi

SDFα
vσ(j)→vl

j
(x)

where Wi is the i-th triangular mesh. Due to the convexity of
the interpolated SDF (2), the solution converges to the global
optimum at a sublinear rate. One key advantage of employing
SDF-based interpolation lies in its ability to handle collision
detection without requiring the computation of the geometry
of the interpolated environment.

Unlike the interpolated convex objects, where the geome-
try changes with α, the objects in V have fixed geometries
that can be represented with meshes. This allows for faster
collision detection methods beyond Frank-Wolfe such as the
Gilbert-Johnson-Keerthi with Expanding Polytope Algorithm
(GJK-EPA) [18].

Fig. 6: Results of a successful path planning using the
proposed framework for the dish insertion task.

IV. EVALUATIONS

We test our framework in three different scenes, 1) placing
dishes on a drying rack, 2) extracting a box from a narrow
gap, and 3) maze navigation of nonhonolonomic system. The
first two scenarios are compared against the results obtained
using baseline planners from TrajOpt [10], OMPL [19] and
CHOMP [8]. The timeout for the OMPL was set to 30
seconds and 50 seconds for each respective scenario.

A. Placing Dishes on the Rack

Inserting a dish into a narrow gap of a drying rack is
challenging for a manipulator [20]. The thinness of the rack
makes deep penetration more likely, resulting in being stuck
in infeasibility. For the same reason, even achieving the
feasible goal position is challenging for this scenario.

We define the objective function as the distance to an
approximate reference pose located at the center of the rack,
facing horizontal direction. Additionally, the Cartesian path
length objective function and a hard constraint on the initial
joint position are incorporated. By employing our proposed
initialization scheme and refinement process, feasible final
position of the plate placed on the drying rack, along with a
feasible path could be achieved.

Table I compares the result of the optimization with
and without collision constraint interpolation. Success time
shows the mean and standard deviation of the elapsed time
of success cases, while total time shows both success and
failure cases. The tests are conducted using combinations
of three different shapes of dishes and 20 different racks.
The results indicate that our method outperforms the one
without collision constraint interpolation in both success rate
and computation time.

Method Success Total time (s) Success time (s)

Proposed 58/60 3.56 ± 0.69 3.95 ± 0.68
Without interpolation 23/60 7.06 ± 0.33 7.42 ± 0.27

TABLE I: Ablation study of dish placing with and without
collision constraint interpolation.

Conventional planning methods typically require a prede-
fined goal pose. To compare our proposed framework with

Method Success Total time (s) Success time (s)

Proposed 20/20 3.28 ± 0.61 3.28 ± 0.61

RRTConnect 9/20 20.08 ± 11.18 10.45 ± 10.32
BiTRRT 10/20 22.21 ± 9.91 16.24 ± 11.10
TRRT 2/20 26.37 ± 9.02 1.36 ± 0.00
BiEST 4/20 23.42 ± 9.91 16.24 ± 11.10
BMFT 2/20 21.34 ± 7.86 10.85 ± 8.33

PRMstar 0/20 31.67 ± 0.90 -
LazyPRM 0/20 30.03 ± 0.00 -
KPIECE 1/20 22.20 ± 9.09 8.48 ± 0

BKPIECE 4/20 21.34 ± 7.86 10.85 ± 8.33

TrajOpt 0/20 4.76 ± 1.27 -
CHOMP 2/20 22.74 ± 2.58 15.28 ± 0.03

TABLE II: Comparison with other methods for the task of
placing dish, showing the planning time and success rate,
with the goal position provided by our framework.

Method Success Total time (s) Success time (s)

Proposed 30/30 6.52 ± 0.69 6.52 ± 0.69

RRTConnect 1/30 48.83 ± 3.54 32.91 ± 0.00
BiTRRT 19/30 30.33 ± 14.23 23.15 ± 12.80
TRRT 0/30 50.03 ± 0.00 -
BiEST 0/30 50.07 ± 0.16 -
BMFT 1/30 49.51 ± 4.98 32.41 ± 0.00

PRMstar 0/30 50.28 ± 0.41 -
LazyPRM 0/30 50.04 ± 0.01 -
KPIECE 0/30 50.04 ± 0.015 -

BKPIECE 0/30 50.07 ± 0.14 -

TrajOpt 17/30 3.41 ± 1.09 2.71 ± 0.93
CHOMP 0/30 32.66 ± 11.20 -

TABLE III: Comparison with other methods for the task of
extracting tool from a narrow gap, showing the planning time
and success rate.

existing methods, we used the feasible final pose obtained by
our framework as the goal position for the other methods. We
tested twelve different shapes of dish racks, with the results
presented in Table II. As also shown in [2], conventional
sampling-based methods—except for BiTRRT [21]—faced
significant challenges in solving the narrow passage problem.
Despite making the problem easier for the baselines by pro-
viding the goal pose, our method still outperformed all others
in both success rate and computation time. Note that in the
case of TrajOpt, continuous collision detection is performed
by assuming a convex hull between waypoints. However,
this results in an overly conservative over-approximation for
the non-convex geometry of the dish, leading to failure in
successful execution.

B. Extraction of Tool from a Narrow Gap

Taking tool out through a narrow gap is a challenge task
for a manipulator, especially when the size of the tool is
large, or the obstacles are thin. Our objective is to optimize
the manipulator path, starting from a pose that grasping the
object, and extracting it out through a narrow gap. Fig 1
shows the result of the optimization.

We introduced slight randomness into the environment
configuration to create 30 environments. Each planner was

Fig. 7: Process of the path planning optimization of a
nonholonomic system in a maze (clock-wise).

tested under these conditions. As shown in Table III,
CHOMP and sampling methods had low success rates and
longer planning times compared to our approach. While
TrajOpt achieved higher success rates and shorter planning
times than the sampling methods, its success rates were still
lower than our framework, which successfully planned in all
configurations.

C. Nonholonomic Navigation of Maze

Nonholonomic navigation of maze has been studied us-
ing various approaches such as RRT-based nonholonomic
planning [22]. However, once the volume of the vehicle is
considered, the corridors in the configuration space become
extremely narrow, causing a significant loss of scalability
of sampling-based approaches. Our methodology can aug-
ment nonholonomic constraints within a general optimization
framework and address the narrow corridor problem through
the collision constraint interpolation. The result of the opti-
mization is illustrated in Fig. 7. Starting from an environment
with enlarged free space, the path of the vehicle is effectively
optimize to navigate through the maze.

V. CONCLUSIONS

We present a path planning framework specifically de-
signed to address the challenges posed by narrow passage,
but it has several limitations. Firstly, objects can only be
added when contained in a leaf set, which may limit the
applicability of the framework in environments with complex
topologies. Moreover, the collision constraint interpolation
incurs additional overhead due to the convex decomposition
of the environment. Additionally, as the problem is solved
iteratively by increasing the interpolation variable α, this
method can be time-consuming in scenarios where extremely
narrow passages are not present. Finally, the optimization-
based nature of our methodology risks getting stuck in
local minima. Future work includes analyzing homotopy
and extending the framework to more general and complex
environments.

REFERENCES

[1] S. Ruan, K. L. Poblete, H. Wu, Q. Ma, and G. S. Chirikjian.
Efficient path planning in narrow passages for robots with ellipsoidal
components. IEEE Transactions on Robotics, 39(1):110–127, 2022.

[2] S. Li and N. T. Dantam. Sample-driven connectivity learning for
motion planning in narrow passages. In IEEE International Conference
on Robotics and Automation, 2023.

[3] A. Orthey and M. Toussaint. Section patterns: Efficiently solving
narrow passage problems in multilevel motion planning. IEEE
Transactions on Robotics, 37(6):1891–1905, 2021.

[4] N. Hiraoka, H. Ishida, T. Hiraoka, K. Kojima, K. Okada, and M. Inaba.
Sampling-based global path planning using convex polytope approx-
imation for narrow collision-free space of humanoid. International
Journal of Humanoid Robotics, page 2450005, 2024.

[5] S. LaValle. Rapidly-exploring random trees: A new tool for path
planning. Research Report 9811, 1998.

[6] L. E. Kavraki, P. Svestka, J-C Latombe, and M. H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–
580, 1996.

[7] L. E. Kavraki, M. N. Kolountzakis, and J-C Latombe. Analysis
of probabilistic roadmaps for path planning. IEEE Transactions on
Robotics and automation, 14(1):166–171, 1998.

[8] N. D. Ratliff, M. Zucker, J. A. Bagnell, and S. S. Srinivasa. Chomp:
Gradient optimization techniques for efficient motion planning. In
IEEE International Conference on Robotics and Automation, pages
489–494, 2009.

[9] A. D. Dragan, N. D. Ratliff, and S. S. Srinivasa. Manipulation planning
with goal sets using constrained trajectory optimization. In IEEE
International Conference on Robotics and Automation, pages 4582–
4588, 2011.

[10] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel. Motion planning with sequential
convex optimization and convex collision checking. The International
Journal of Robotics Research, 33(9):1251–1270, 2014.

[11] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal.
Stomp: Stochastic trajectory optimization for motion planning. In
IEEE International Conference on Robotics and Automation, pages
4569–4574, 2011.

[12] K. Erleben. Methodology for assessing mesh-based contact point
methods. ACM Transactions on Graphics, 37(3):1–30, 2018.

[13] J. Pan, Z. Chen, and P. Abbeel. Predicting initialization effectiveness
for trajectory optimization. In IEEE International Conference on
Robotics and Automation, pages 5183–5190, 2014.

[14] S. Yan, X.-C. Tai, J. Liu, and H.-Y. Huang. Convexity shape prior
for level set-based image segmentation method. IEEE Transactions
on Image Processing, 29:7141–7152, 2020.

[15] G. Turk and J. F. O’brien. Shape transformation using variational
implicit functions. In ACM SIGGRAPH Courses, pages 13–es. 2005.

[16] J. Lee, M. Lee, and D. Lee. Modular and parallelizable multibody
physics simulation via subsystem-based admm. In IEEE International
Conference on Robotics and Automation, 2023.

[17] M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and
Z. Corse. Local optimization for robust signed distance field collision.
Proceedings of the ACM on Computer Graphics and Interactive
Techniques, 3(1):1–17, 2020.

[18] G. Van Den Bergen. Proximity queries and penetration depth compu-
tation on 3d game objects. In Game developers conference, volume
170, 2001.

[19] D. Coleman, I. Sucan, S. Chitta, and N. Correll. Reducing the barrier
to entry of complex robotic software: a moveit! case study. arXiv
preprint arXiv:1404.3785, 2014.

[20] J. Lee, M. Lee, and D. Lee. Uncertain pose estimation during contact
tasks using differentiable contact features. Robotics: Science and
Systems, 2023.

[21] D. Devaurs, Thierry Siméon, and Juan Cortés. Enhancing the
transition-based rrt to deal with complex cost spaces. In IEEE
international conference on robotics and automation, pages 4120–
4125, 2013.

[22] L. Palmieri, S. Koenig, and K. O Arras. Rrt-based nonholonomic
motion planning using any-angle path biasing. In IEEE International
Conference on Robotics and Automation, pages 2775–2781, 2016.

	Introduction
	Collision Constraint Interpolation
	Signed Distance Function
	Smoothed SDF Interpolation between Convex Objects
	Homotopy Preserving Collision Constraint Interpolation
	Generation of Leaf Set Sequences

	Path Planning using Collision Constraint Interpolation
	Evaluations
	Placing Dishes on the Rack
	Extraction of Tool from a Narrow Gap
	Nonholonomic Navigation of Maze

	Conclusions
	References

