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Abstract— This paper presents a framework designed to
tackle a range of planning problems arise in manipulation,
which typically involve complex geometric-physical reasoning
related to contact and dynamic constraints. We introduce the
Contact Factor Graph (CFG) to graphically model these diverse
factors, enabling us to perform inference on the graphs to
approximate the distribution and sample appropriate solutions.
We propose a novel approach that can incorporate various phe-
nomena of contact manipulation as differentiable factors, and
develop an efficient inference algorithm for CFG that leverages
this differentiability along with the conditional probabilities
arising from the structured nature of contact. Our results
demonstrate the capability of our framework in generating
viable samples and approximating posterior distributions for
various manipulation scenarios.

I. INTRODUCTION

Manipulation planning is a crucial and essential problem
for robots to achieve their task goals. Given that typical
manipulation tasks are executed through contact, the problem
often arises various range of inverse problems over con-
tact mechanics and structural dynamics, mostly requiring
geometric-physical reasoning.

This reasoning in manipulation planning typically involves
considering a variety of factors, resulting in a non-convex,
multi-modal search space. One natural perspective for ad-
dressing these problems is to perform inference on the poste-
rior distribution of the variables [1], [2]. By framing the prob-
lem this way, one can apply diverse probabilistic inference
methods, such as optimization, Markov Chain Monte Carlo
(MCMC) or variational inference, to explore the posterior
distribution and identify the most probable solutions. This
approach has shown successful demonstrations in recent
work on motion planning [3]–[5]. However, in manipulation
planning, the inherent complexity of contact interactions
presents various challenges, such as creating a tractable
formulation, developing scalable inference algorithms, and
generating data using sampling methods. Consequently, find-
ing an efficient way to seek a diverse set of solutions within
the distribution remains elusive.

Given this context, in this work, we introduce a new mod-
eling and inference algorithm to address diverse reasoning
arise in manipulation planning, leveraging the differentiable
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representation and inherent structure of the contact mechan-
ics. We first propose a formulation of the problem through
a graphical model, termed Contact Factor Graphs (CFG).
This model effectively organizes the relationships between
object poses and contact forces, incorporating a variety of
contact and dynamic factors. We describe how each factor
can be formulated in differentiable manner and demonstrate
that various reasoning problems for manipulation can be rep-
resented within this framework. Then, we introduce a novel
gradient-based inference within the CFG. By capitalizing
on the structured nature of the contact factors, we explain
the advantages that can be obtained when using conditional
probabilities in the inference process. We demonstrate the
derivation of an efficient score function by exploiting the
differentiability of the factors and the envelope theorem.
The proposed framework is demonstrated to be capable
of effective sample generation and approximation of the
posterior probability distribution through diverse examples.

II. RELATED WORKS

A. Planning as Inference

Formulating and solving problems using graphical mod-
els and inference provides a structured approach with a
stochastic perspective. For instance, [2] offers an overview
of the inference perspective in control problems, while
[6] elaborates on the utility of factor graphs in various
robotic applications. Addressing the continuous motion plan-
ning challenge, [3] advocates for leveraging this perspective
through factor graph modeling, accompanied by maximum-
a-posteriori (MAP) inference via optimization techniques.
Uraı́n et al. [7] construct a reactive policy by sampling from
a multimodal posterior distribution using the cross-entropy
method. The effectiveness of Bayesian inference in trajectory
optimization is demonstrated in [8], [9]. In [10], geometric
and physical constraint satisfaction problems are modeled
as graphs and addressed through diffusion-based inference
techniques. One advantage of such graphical models is their
compositional nature. Our graphical model also employs
contact-related constraints in a compositional manner but
places greater emphasis on a model-based, differentiable
energy function.

B. Problems with Contact

For problems involving contact, the inference approach
introduces challenges as they involve constraints not only on
the planning state but also on the contact impulse as non-
linear complementarity [11]. This may necessitate searching
over hybrid modes [12], such as mixed-integer programming



[13], which is typically computationally expensive. From
an optimization perspective, contact-implicit constraints can
make the problem mode-invariant, as demonstrated in [14]–
[16]. Recent works have focused more on improving the
tractability and utility of the formulations. Some reflections
on a “good” model for physical reasoning are discussed in
[17]. This is also related to the recent emergence of differ-
entiable simulators [18]–[21], which can provide gradients
to help solve inverse problems involving contact physics.
Several studies have demonstrated their efficacy compared to
black-box sampling and inference methods commonly used
in data generation processes and deep reinforcement learning
[22]–[24]. Our work aligns with this trend, yet, instead of
directly differentiating the simulation, we propose to form a
factor graph with differentiable contact factors, which offers
a broader perspective on modeling and facilitates tailored
gradient-based inference.

III. MODELING CONTACT FACTOR GRAPHS

A. Problem Formulation

In this work, we primarily address the challenge of gener-
ating solution sets for geometric and physical constraints sat-
isfaction encountered in contact-based tasks, assuming that
the task skeleton is provided by high-level discrete search.
Also we base our analysis on given geometric and physical
parameters, focusing on the variable X = {q, u, λ}, where
q, u, and λ stand for the configuration space, external input,
and contact force, respectively. The constraints among these
variables are modeled as factors, which can be visualized
through a graphical model. In the following section, we detail
the types of factors we primarily consider.

B. Contact Mechanics

Incorporating contact constraints into the factor graph is
essential and has significant implications. Here, we present
a range of constraints involved in contact mechanics. One
fundamental property of contact is its unilateral nature,
resulting in the following constraints:

g(q) ≥ 0 (non-penetration)
g(q)λ = 0 (complementarity)

(1)

where g(q) ∈ R is the gap function between objects. Another
crucial aspect of contact mechanics is the Coulomb friction
law, which we precisely define as follows:

Cn(q) ∋ µλn + λt ⊥ βn(q) + vt ∈ Cn(q) (Coulomb) (2)

Here, the subscript n, t denote normal/tangential, µ ∈ R+ is
the friction coefficient, β ∈ R is an auxiliary variable, n(q)
is the contact normal, Cn(q) is a second-order cone with n(q)
as its axis. The normal and tangential components of λ are
expressed as:

λn = n(q)n(q)Tλ λt = (I − n(q)n(q)T )λ

Also the contact Jacobian Jc and the tangential velocity vt
are defined as1

Jc =
[
I −[c(q)]×

]
vt = (I − n(q)n(q)T )Jcδq

where c(q) is the contact point and [·]× denotes the skew
matrix. In the proposition below, we provide a rationale of
the condition specified (2):

Proposition 1: The condition (2) is equivalent to the
Karush-Kuhn-Tucker conditions derived from the principle
of maximal dissipation [25]:

0 ≤ ∥vt∥ ⊥ µλn − ∥λt∥ ≥ 0

∥vt∥λt + µλnvt = 0.
(3)

while we slightly abuse notation here by denoting λn as
n(q)Tλ.

Proof: Consider the case where µλn−∥λt∥ > 0, which
corresponds to the stick condition in (3), and ∥vt∥ = 0 holds.
In (2), this case implies β = 0 and consequently ∥vt∥ = 0,
establishing equivalence. In the case of µλn − ∥λt∥ = 0,
which aligns with the slip condition in (3), the condition
∥vt∥λt+µλnvt = 0 holds. In (2), this situation indicates that
µλn+λt resides on the boundary of Cn(q), and accordingly,
βn(q) + vt must also lie on the boundary, where β = ∥vt∥.
Consequently, λT

t vt + ∥λt∥∥vt∥ = 0, thus confirming their
equivalence.
Despite the equivalence of (2) and (3), we opt to utilize the
proposed from (2) in our framework to avoid explicit use of
non-differentiable 2-norm ∥ · ∥ terms with a combination of
conic constraints.

C. Quasi-Dynamics

To make planning results dynamically feasible, employing
dynamics factor is also essential. In general, the relation can
be formalized as follows:

A(q)δq − b(q)− Ju(q)
Tu− Jc(q)

Tλ = 0 (4)

where A(q) ∈ Rd×d, b(q) ∈ Rd are the dynamics ma-
trix/vector typically related to inertia and control gain, Ju(q)
is the input mapping matrix. As we focus on manipulation
problem in this work, we primarily adopt the quasi-static
or quasi-dynamic assumption [23] in (4). While this may
overlook certain dynamic effects, such as Coriolis forces, it
generally leads to more well-defined inference process.

D. Differentiable Contact Features

The aforementioned equations on contact constraints are
composed of contact features such as gap g(q), point p(q),
and normal n(q). As our objective is to develop an efficient
gradient-based inference scheme, it is essential to ensure
the differentiability of factors. To achieve this, we adopt
a differentiable support function [26] as the geometry rep-
resentation in our framework. This approach theoretically

1In this work, we express λ and Jc with respect to global coordinates.
This obviates the need to explicitly specify the contact tangential coordi-
nates, making it easier in computation and differentiation.



guarantee to provide differentiable contact features (DCF)
and can represent arbitrary compositions of convex shapes.
It is important to note that such differentiability of contact
features between geometries is under-explored and has not
been utilized enough even in recent literature [23], [27],
where shapes are often simplified to spheres or planes.

E. Composition of Factors

In manipulation planning, the graphical model should
integrate the various constraint factors outlined earlier in a
compositional manner. Often, we need to utilize a specific
set of factors tailored to the task at hand, with each factor
corresponding to a subset of variables. Below we present
some examples of characterized sets of constraints for spe-
cific situations: For static contact manipulation tasks like
grasping or placement, the necessary factors may include:

g(q) ≥ 0 g(q)λ = 0 µλn + λt ∈ Cn(q) (5)

with static equilibrium from (4). These functional constraints
(5) indicate the set of variables that satisfy contact com-
plementarity and maintain stability with respect to rational
contact forces. Alternatively, if the objective is to maintain
contact without slipping, as in pivoting scenarios, the fol-
lowing set of factors can be employed:

g(q) = 0 vt = 0 µλn + λt ∈ Cn(q) (6)

with quasi-dynamics equation from (4). The above (5) and
(6) can be interpreted as distinct sets of contact factors.
Similarly, various types of interactions can be modeled using
a compositional arrangement of factors while the joint dis-
tribution on the variable nodes can be expressed as follows:

p(X) =

M∏
i=1

pi(Xi) where pi(Xi) ∝ exp(−fi) (7)

where M is the number of factor node, Xi ⊆ X is the set
of variable adjacent to i-th factor, fi is the energy function
that encode the constraints. The form of the energy function
depends on the type of constraints such as equality (ri = 0),
inequality (ri ≥ 0), and cone constraints (ri ∈ C). In this
work, we assume the following forms of energy function fi
for each type of constraint:

1

2
∥ri∥2,

1

2
∥min(ri, 0)∥2,

1

2
∥dC(ri)∥2 (8)

which are for equality, inequality, and cone, respectively.
Here, dC is the L2 distance to the cone C. As mentioned
earlier, each ri is readily differentiable. We also remark
that our CFG formulation does not simply embed a forward
simulator; instead, it provides the flexibility to model vari-
ous types of interactions within physical reasoning. Fig. 1
illustrates an example of CFG modeling.

IV. INFERENCE IN CONTACT FACTOR GRAPHS

Given the modeling described in Sec. III, we need to per-
form inference on the joint distribution (7). Approximating
such complex multimodal distributions presents a significant
challenge in machine learning. In this section, we propose

an efficient Bayesian inference algorithm that exploits on the
structure of the inner factorized likelihood function.

A. MAP Inference on the Conditional Distribution

Joint distribution on X is typically high-dimensional,
especially when the number of contact candidate increases.
To alleiviate this issue, let us first consider the distribution on
u, λ conditioned by q. Then we can perform MAP inference
on the conditional distribution p(u, λ | q) through following
optimization:

(λ∗(q), u∗(q)) = argmin
λ,u

M∑
i=1

fi(λ, u, q). (9)

Our key insight is that for the factors (1), (2) and (4), and also
their task-specific versions (e.g., (5)), u, λ exhibit linearity
in ri given q. Then following lemma gives the convexity of
the energy function form (8):

Lemma 1: The energy functions defined in (8) are convex
and have Lipschitz continuous gradient with respect to ri.

Proof: For inequality and equality types, the properties
are trivial. For cone types, we refer to Lemma 2 of [28] for
proof.
Consequently, the optimization problem described in (9)
is convex, enabling us to perform MAP inference on the
conditional distribution p(u, λ | q) in an efficient manner,
on a global scale. As shown in Lemma 1, the gradient of
this function possesses Lipschitz continuity, from which we
can derive the Hessian matrix. For the Newton step, we
can employ the semi-analytic primal (SAP) solver presented
in [28], which utilizes exact linesearch and is proven to
achieve superlinear convergence. Although this algorithm
was originally developed for physics simulations, its theo-
retical properties are all preserved for (8), allows it to be
seamlessly adapted to our process. We observe that this
certifiable convex optimization provides significant conver-
gence advantages in the inference process, as shown in
Sec. V. Additionally, our scheme can dramatically reduce the
number of expensive contact feature computation function
calls, which are usually numerical processes themselves.

B. Conditional Independence and Factorization

Aforementioned Newton steps for solving (9) directly
requires the factorization of the Hessian matrix. Here, the
structure of the matrix corresponds to the configuration of
p(u, λ | q), which we can exploit during the factorization
process. For instance, independence arises between u and λ
acting at different time intervals due to the Markov property
of physics (i.e., q at any point in time only affects q, u, λ
at the immediately preceding point in time). Generally, the
dependency between variables in conditional distribution is
determined by the quasi-dynamics factors (4), particularly
through the structure of the Jacobians. In our framework, we
effectively leverage this sparsity pattern during the factoriza-
tion of the Hessian, which can be equivalently interpreted as
an elimination process on the factor graph [6].



Fig. 1: Overview example of the proposed framework. Given the information on environment, contact factor graphs is composed using
dynamics and contact factors relevant to the tasks. During the inference phase, convex optimization is employed to compress the distribution
with respect to q. Score function is computed and applied within optimization or SVGD for inference.

C. Inference on q

Preceding MAP inference on the conditional distribution
identifies the most plausible estimates λ and u for a given
q. Building on this, we redefine the inference problem over
the distribution of q as follows:

p(q) ∝
M∏
i=1

exp(−fi(λ∗(q), u∗(q), q)). (10)

This distribution (10) is not exactly a marginalization of the
original distribution; rather, it represents the conditionally
optimal distribution of q from the MAP estimates λ∗(q) and
u∗(q). Yet, this conditioned distribution remains multimodal
and is intractable to compute directly. We should not merely
assessing q in isolation but considering how q behaves when
optimized estimates λ∗(q) and u∗(q) are factored into the
evaluation.

1) Score Function via Envelope Theorem: To perform
inference on the distribution given in (10), we can adopt vari-
ous optimization, MCMC or variational inference algorithms.
Here, the score function can play an essential role in the
process from high-dimensional or constrained distributions.
Within our framework, given that the MAP inference (e.g.,
(9)) represents a parameterized convex optimization with
respect to q, we propose to derive the score function for
(10) by employing the envelope theorem [29]. Accordingly,
we get

∇q log p(q) =

M∑
i=1

∂fi(λ
∗, u∗, q)

∂q
. (11)

Note that the right hand side is composed of partial deriva-
tive of fi with respect to q, therefore does not require any
derivatives of λ∗ and u∗ with respect to q. It is worth noting
that computing this derivative using implicit differentiation
typically necessitates matrix inversion of problem-size matri-
ces or a tailored design of the solver [30], which can degrade
the efficiency of the entire framework. In the supplementary
material, we summarize the results of specific derivation of
partial derivatives for diverse contact factors.

2) MAP Inference: Following (10), conducting MAP in-
ference in a CFG essentially entails solving the following

Algorithm 1: MAP Inference in CFG

1 Input: G
2 Initialize l = 0, q0, inverse Hessian B0

3 while not converged do
4 Compute DCF for ql

5 Solve (9) under ql using SAP solver
6 Compute score function ∇ log p(ql) (11)
7 Compute ∆ql = −Bl∇ log p(ql)
8 Compute α← Line-Search(ql,∆ql)
9 Update ql+1 ← ql + α∆ql

10 Update inverse Hessian Bl+1 via BFGS
11 l← l + 1
12 end
13 Output: X

optimization problem:

min
q

M∑
i=1

fi(λ
∗(q), u∗(q), q) (12)

Given that (11) provides the gradient efficiently, using spe-
cific gradient-descent methods can facilitate the solution of
(12). Among the various algorithms available, we have cho-
sen to use the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm [31]. This quasi-Newton method is particularly
effective because it reliably converges by estimating the
inverse Hessian matrix at each step, using only the gradient
information provided. Alg. 1 summarizes the complete MAP
inference process in CFG.

3) Variational Inference: The MAP inference in Alg. 1
typically yields only a single solution and thus cannot
capture the multi-modality of the probabilistic distribution
(10). Additionally, the solution obtained may be a local
optimum and may not be sufficiently reasonable. Many
problems involving contacts in robotics have multi-modal
solutions, making it necessary to capture this variability.
In this context, variational inference on CFG can provide
an overall approximation of the distribution, which can be
formulated as

p̂∗(q) = argmin
p̂

DKL(p̂(q) ∥ p(q)) (13)



Algorithm 2: Variational Inference in CFG

1 Input: G, kernel K
2 Initialize l = 0, learning rate ϵ, particle

{
qj
}S

j=1

3 while not converged do
4 for j = 1 : S do
5 Compute DCF for qj,l

6 Solve (9) under qj,l using SAP solver
7 Compute kernel function K(qj,l, q)
8 Compute score function ∇ log p(qj,l) (11)
9 Update particles (14)

10 end
11 l← l + 1
12 end
13 Output: X

where DKL represents the Kullback-Leibler divergence.
To address (13), we utilize Stein Variational Gradient

Descent (SVGD [32]). In SVGD, the distribution p̂(q) is
modeled non-parametrically using a set of particles. At
each iteration, these particles are updated to minimize the
divergence from the true distribution, utilizing techniques
from reproducing kernel Hilbert space. The update process
for each particle q is as follows:

qj ← qj + ϵη(qj)

η(q) =

S∑
j=1

[
K(qj , q)∇qj log p(q

j) +∇qjK(qj , q)
] (14)

where S is the number of particles, ϵ ∈ R+ is a learning
rate, K is a positive definite kernel function. Essentially, the
process (14) guides the particles to follow the score function,
while a repulsive force prevents them collapse into a single
mode. As (14) requires score function, this mechanism can
be seamlessly integrated with the computation of (11).

Integrating with SVGD offers significant advantages, in-
cluding the ability to perform operations in parallel across all
particles and generally superior particle efficiency compared
to MCMC-based sampling algorithms. The detailed varia-
tional inference process is presented in Alg. 2. Additionally,
the overall framework is illustrated in Fig. 1.

V. ILLUSTRATIVE EXAMPLES

In this section, we present various illustrative examples of
manipulation planning using CFG. For the implementation,
we primarily use MATLAB and C++, with fminunc and
custom BFGS module. The planning results are validated
through physics simulation [33].

A. Stable Placement

In our first experimental scenario, we tackle the problem
of inferring stable placement poses for a given object within
a 2D environment. To address this problem, we apply the
principles specified in (5) within the CFG with equilibrium
constraints under various external inputs u. Note that we
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Fig. 2: Comparison our MAP inference algorithm and direct in-
ference on the joint distribution. Left: Convergence over iterations.
Right: Quality of the final results.
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Fig. 3: Examples of variational inference results in CFG. Left:
Stable object poses sampled from the approximated distribution.
Right: Visualization of the SVGD results under a fixed rotation.

do not pre-specify contact pairs; instead, our CFG search
navigates the space of making and breaking contacts.

We compare our inference scheme (Alg. 1) with the
baseline approach that performs inference directly on the
joint distribution (7) by optimization (we refer to this as
direct hereafter). As shown in Fig. 2, our method exhibits
significantly faster convergence. For 10 randomly initialized
samples, all of them successfully converge: 2 to (undesirable)
local minima and 8 to proper stable poses. In the direct
method, most of the samples fail to converge properly, and
only 1 of them succeed in finding a stable pose.

We also apply variational inference (Alg. 2) to approxi-
mate distribution of stable pose. For the kernel function, we
use a common radial basis function. The results depicted
in Fig. 3, demonstrate that CFG modeling combined with
gradient-based SVGD successfully generates particles that
approximate the distribution, enabling us to sample diverse
and high-quality poses.

B. Pivoting

Next, we consider the pivoting task, which involves rotat-
ing an object while maintaining contact with both the floor
and the manipulator. In CFG, we model the problem that
reasons on the contact points (where the manipulator will
push the object during the task) and the appropriate contact
forces that achieve quasi-dynamics with the stick state (6) at
each time step.

Our results are depicted in Fig. 4. Given the clear multi-
modality of the possible pushing point, we test variational in-
ference in CFG. As shown, the resulting particles from Alg. 2
successfully capture the distribution. We also compared these
results with ensemble MCMC [34], a widely-used Bayesian
inference method. Although the ensemble scheme offers ad-
vantages in exploration, the resulting samples fail to properly
capture the distribution, possibly due to the complex contact
landscape and non-reliance on gradient information.
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Fig. 5: Snapshots of planning results generated through inferences
in CFG. Top: valve turning with slide maneuvers. Bottom: multi-
finger grasping and placing.

C. Valve Turning with Slide

Subsequently, we test a scenario in which the robot uses
its end effector to turn a lever on a valve. Here, we give the
critical constraint that the robot must maintain contact with
the lever and turn it while avoiding reaching its joint limit.
Therefore, it should effectively exploit sliding on the contact
surface. As illustrated in the compressed graph in Fig. 6, we
model the planning problem as a sequence of touch and turn
actions. The touch factor is represented by g(q) = 0, while
the turn factor incorporates g(q) = 0, the desired lever angle,
joint limits, and the friction law (2).

Then as in integrated task and motion planning [35],
we can sequentially apply the CFG inference process in a
factored manner to derive the complete solution. Initially,
we sample the touching pose q0, followed by the turning
trajectory q1, · · · , qN . Across 10 different lever geometries,
we successfully generate planning results in an average of
74 ms (see Fig. 5 for a snapshot) using Alg. 1, whereas the
Direct method failed to produce any successful samples.

D. Multifinger Grasp and Place

Finally, we tackle the multifinger grasp and place problem,
which involves inferring proper grasping poses for a gripper
and a given object, and then place it in a stable pose. Similar
to the valve turning example, we can represent and solve
the problem sequentially: first, find the gripper pose qe with
manipulator pose q1, then determine the placement pose q2 as
depicted in Fig. 6. We include kinematic feasibility, collision

(a) valve turn (b) grasp place

Fig. 6: Compressed form of CFG with respect to q (as in Fig. 1)
for manipulation planning problems. For better efficiency, inference
can be performed sequentially on each subgraph.
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gence over iterations. Right: Quality of the final results.

avoidance, and the set of contact factors (5) to naturally
handle complementarity and stability, while eliminating the
need to pre-specify the contact interface.

By aforementioned strategy, we successfully generate
planning results in an average of 384 ms (see Fig. 5
for a snapshot). To validate the sample generation perfor-
mance, we compare (qe, q1) sampling using Alg. 1, with
the direct method and also simulated annealing (SA),
which performs global optimization through sampling with-
out relying on gradient information. The results, depicted in
Fig. 7, demonstrate that our methods achieve significantly
faster convergence and yield higher-quality solutions. As
other methods exhibit very low sampling success rates, the
overall planning time slowed down by more than 10×.

VI. DISCUSSION AND CONCLUSION

In this paper, we introduce the Contact Factor Graph
(CFG) framework, which serves as a versatile tool for
addressing a wide geometric-physical reasoning problems
arise in manipulation planning. CFG facilitates the reasoning
by modeling a differentiable, factorized probabilistic distri-
bution aligned with contact mechanics and dynamics. We
further present an inference algorithm for CFG, employing
parameterized convex optimization techniques that leverage
efficient gradient computation through the envelope theorem.

One limitation of the current framework is our assumption
that the skeleton of manipulation planning is predefined. As
partially demonstrated in Sec. V, we believe that various
reasoning in CFG can be extended by sequential sampling
on subgraphs, therefore can be combined to a range of works
on task-level planning [35]–[37] or subgoal sampling [23],
to significantly improve the tractability of the diverse array
of complex manipulation. Also, our efficient and scalable
solution sample generation scheme can also be used for data
generation to build learning-based models, particularly for
learning implicit distributions for diffusion processes [10].
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[14] I. Mordatch, Z. Popović, and E. Todorov. Contact-invariant opti-
mization for hand manipulation. In Proceedings of the ACM SIG-
GRAPH/Eurographics symposium on computer animation, pages 137–
144, 2012.

[15] M. Posa, C. Cantu, and R. Tedrake. A direct method for trajectory
optimization of rigid bodies through contact. The International Journal
of Robotics Research, 33(1):69–81, 2014.

[16] T. A. Howell, K. Tracy, S. Le Cleac’h, and Z. Manchester. Calipso:
A differentiable solver for trajectory optimization with conic and
complementarity constraints. In The International Symposium of
Robotics Research, pages 504–521, 2022.

[17] M. Toussaint, J. Ha, and D. Driess. Describing physics for physi-
cal reasoning: Force-based sequential manipulation planning. IEEE
Robotics and Automation Letters, 5(4):6209–6216, 2020.

[18] M. Geilinger, D. Hahn, J. Zehnder, M. Bächer, B. Thomaszewski,
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