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Abstract— We propose a novel real-time physically-accurate
simulator for long flexible cable manipulation. We first dis-
cretize the cable into multiple rigid link segments, each with
complementarity-based contact model and inter-segment com-
pliant coupling; and partition the cable into a number of
subsystems, each composed with a number of consecutive links.
We then formulate the inter-subsystem consistency constraint
as a certain analytical condition among the inter-subsystem
coupling and the contact impulses; and solve each subsystem
dynamics in parallel with the contact model together with
this consistency condition in an iterative manner, achieving
both the speed and the accuracy of the simulation. A novel
post-regulation scheme is also proposed to further speed up
the simulation. Experimental validation/demonstration are also
performed to show the theory.

I. INTRODUCTION

As the hardware and software technologies of robotics are
rapidly advancing and, in some cases, even quickly maturing,
many attempts are being recently reported and witnessed to
bring in robots into real industrial processes and applica-
tions. Among numerous examples of this industrial robotic
application, one with an importance for many industrial
sectors and domains is the long flexible cable manipulation:
e.g., electrical wire handling [1], automotive wire-harness
assembly, fabrication with hot wire cutting [2], and even
probe navigation and knot tying for surgery. See also [3].

Properly manipulating this long flexible cable for the
robotic applications as stated above is challenging, since the
cable, due to its length and flexibility, can itself assume
fairly complex geometric shape with very large degree-
of-freedom (DOF), yet, the actuation DOF of the robots
are typically only few. This is further complicated by the
cable-environment/object contacts possibly arbitrarily spread
throughout the long cable with their occurrences in turn
depending on the cable behavior, thus, typically neither
predictable a prior (e.g., many iterations of very large-DOF
cable model simulation with contacts necessary) nor measur-
able with affordable-enough sensor arrays (e.g., number of
individual sensors too large or sensing itself infeasible (e.g.,
very thin cable, hot cutting wire)).

Due to these reasons, a model-based control approach for
the long flexible cable manipulation is difficult to attain if not
impossible in most cases, as it requires the followings: 1) a
real-time computable control model with very large DOF and
complex contact situation; and 2) an affordable sensor system
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Fig. 1: Various long flexible cable manipulation simulation: wind-
ing, knot tying, and lifting from left to right.

with very large number of proprioceptive and contact sensors
for feedback control. The discontinuity of the dynamics
stemming from the contacts further substantially complicates
the design of conventional model-based control (e.g., control
primitive design and their switching strategy). An promising
alternative to this is the recently burgeoning data-driven
or machine learning approaches, particularly those based
on reinforcement learning (RL [4]). This technique of RL
necessitates fast and accurate simulators, as it typically
requires vast amount of data, that is often too expensive
and time-consuming to obtain via real physical experiments,
while also completely physically-inaccurate data, however
many or augmented/randomized they are, would likely fail
for the sim-to-real (e.g., [5]) of the learning control policy
into the reality.

In this paper, we propose a novel real-time experimentally-
validated simulator for long flexible cable manipulation
which is applicable for various scenarios. We first discretize
a long flexible cable into multiple rigid cylindrical-link
segments, each with contact model in the form of nonlin-
ear complementarity problem (NCP [6]) and inter-segment
compliant coupling based on the Cosserat rod theory [7]
incorporating extension, shear, bending and torsion between
the links. We also adopt our recently proposed passive
midpoint integration (PMI [8]) as the basis of our simulator,
as it is stable against wide range of simulation parameters
(e.g., very stiff constraint, very light link etc.) due to its
peculiar discrete-time passivity property.

Directly solving this large number of rigid segments
with contacts simultaneously, however, is in general time-
consuming, and to circumvent this, we render our simulation
framework to be parallelized and iterative. More precisely,
we partition the long cable into a number of subsystems,
each consisting of a number of the consecutive rigid-link
segments. We then solve the dynamics of each subsystem in
parallel while formulating their inter-subsystem mechanical
consistency as an analytical condition among the inter-
subsystem coupling impulses and the contact impulses; and
iteratively enforce this consistency condition along with the
dynamics of each subsystem with the contact model, thereby,
simultaneously achieving both the computation speed (i.e.,



real-time) and the structural/dynamic consistency among the
segments/subsystems of the long flexible cable simulation. A
novel post-regulation scheme of the projected Gauss-Seidel
(PGS) solver [9] for the contact NCP is also proposed to
prevent its ill-behaving and, consequently, quicker iteration
convergence and faster simulation time. The accuracy of
the proposed simulator is then validated and demonstrated
against real experimental results.

This fast and accurate simulation of a long flexible cable
has not been incorporated in any of well-known robot simula-
tors (e.g., Vortex [10], Bullet [11]). In fact, this lack of proper
simulation for contact-rich flexible cables or, more generally,
deformable objects, has been pointed out in [12] as the
key obstacle for their learning-based control development.
Recently, the SOFA simulator [13] has been developed for
deformable/soft objects simulation for robotic applications
with real-time speed. However, from its being based on data-
driven model reduction with each reduced model correspond-
ing to each contact mode, it is more suitable for the case
where the number of contact modes is not large [14] and
not applicable for the case of long flexible cable simulation,
where the number of possible contact modes is too many
to be captured by a reasonably many reduced models (e.g.,
winding, self-collisions). To our knowledge, our simulator
proposed in this paper is the very first real-time physically-
correct and experimentally-validated simulation framework
for the long flexible cable manipulation.

The rest of the paper is organized as follows. Sec. II
presents some preliminary materials used in the ensuing de-
velopments. Sec. III describes the dynamics of the discretized
cable in PMI and Sec. IV proposes the main result, i.e., our
parallelized and iterative solver for the long flexible cable
simulation. Sec. V presents validation and demonstration of
our simulator with real experimental results. Sec. VI sum-
marizes the paper with some comments on future research
directions.

II. PRELIMINARY
A. Cosserat Rod Model

In order to simulate flexible movement of the cable while
reflecting the material properties, we adopt the Cosserat
rod model [7] which describes one dimensional rod by the
centerline and the local reference frame. Using continuous
parameter s, strains along the centerline are calculated as

L(s) = dr(s) — ds(s)
s) = 27" (s) ()

where 7 : s — R3 is the centerline function, d; (i = 1 ~ 3) is
the local reference frame, I : s — R3 is the extension and the
shear strain,  : s — R3 is the bending and the torsion strain,
d(-) = (go(-),q(+)) is the mapping to quaternion, and G*
denotes conjugate of q. Dynamics of the Cosserat rod model
can be derived as partial differential equation from and can be
numerically solved [15]. However, since the complementarity
condition resulting from the contact situation is neither
explicitly determined nor can be differentiated, it is difficult
to simulate a operation scenario by continuous formulation.
Thus, we apply spatial discretization to the rod model.

B. Passive Midpoint Integration

We adopt passive midpoint integration (PMI) [8] for
dynamic integration scheme which is derived to enforce
passivity property of the mechanical systems in discrete-
time domain. By considering energy relation directly, PMI
induces superior energy-preserving behavior than other im-
plicit schemes without additional iteration step. For more
details, see [8]. The maximal coordinate expression of the
PMI is given by:

ka%kvk + CVi + BVj, = —dil + Fi + JE
~ Vie+ Vi W
Vp=—"°7+—">
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where M,C, B € R%"*5" ig the mass, Coriolis, damping
matrix with n bodies, T} is the time step size, Vi =
[vg; wi] € RS with v, and wy are linear and angular
velocity, V;, € RO is the representative velocity, Fj, € R is
the external force at the k-th step, and J,; € R37X6n )\, €
R37¢ is the contact Jacobian and impulse while n, is the
number of contact. Also here, dw,? is the potential action
which can be derived from

dipi 1

TV 7 >y,
i Vi'Ty = TkaTk +

L= Vi T} 2
where 1, is a potential energy at the k-th step. The right
hand side of (2) is in fact the second-order approximation of

Vrt+1 — Y.
III. DYNAMICS OF DISCRETIZED CABLE
A. Segmentation and Discrete Strain Energy

To consider all general motion of the cable (i.e., exten-
sion, shear, bending, torsion), we model flexible cable as n
serially articulated 6-DOF rigid cylindrical-link. Each j-th
link segment is expressed by the global position, orientation,
frame vector which denoted as p;, R;,d;, and the motion
of the cable can be described as relative behavior of the
consecutive segments:

er; =dj — R} (pjr1 — Rjs1djsa —pj)
e2j = Vec(q"(R;) - G(Rj+1))

where e ; € R? is the constraint error for the extension,
shear, e3; € R3 is the constraint error for the bending,
torsion derived from finite difference [16], ¢(-) maps SO3
to quaternion and Vec(:) represents the vector part of the
quaternion. Then the discrete strain energies are given by

Ve = 1€1T[K1]61 + %eZT[Kﬂ@ = leT[Ke}e @)

2 2
where 1), is total strain energy, €, = [€m,1; " ;€m.n] €
RBn’ [Km] - diag(Kma e ,Km) S RSnXSn fOI' m = 1,2,
e = le1;es] € R and [K.] = diag(K.,---,K.) €

R6"x6n  Here, gain matrix K, Ko are derived from the
Cosserat model:

K, = diag(GA/L,GA/L, EA/L)
K, = diag(EI/L,EI/L,GJ/L)

where E,G is the Young’s modulus, torsion modulus of
the cable, A, L is a cross section area and a length of



each discretized segment. In this paper, we use discrete
element as cylinder so geometric parameters are defined as
A=mr?2I=025mr* J = 0.57r* where r is the radius of
cylinder.

B. Dynamics Formulation of Discretized Cable

Based on the discrete strain energy of the total cable
(3), the potential action for the PMI formulation (2) can be
written as

1 N
dl = JI[Ke)(e + 5 JViTy) = JE e )

where )\, € RS is the potential action impulse, J, €
R67%67 ig the Jacobian matrix which maps V;, to % obtained
by derivative on Lie groups. Here, outer product approxima-
tion of Hessian (i.e., V29, ~ JI[K.]J.) is used and by
this approximation, we can obtain a linear relation between
Ae and V' which will further be used in subsystem solver in
Sec. IV. By applying (4) to (1), we can simplify the dynamic
equation as

AV = By + JE N

2M T
A= +C+B+ ?’“JET[KG]JET,C € Rénx6n (5)
By = —JI'[K.e + Fy, € R®"

Here, Aj, is invertible from the positive definite property.

C. Direct Solver

To solve V with Aet directly from (5), contact form
equation is derived as

JetVie = Jer Ay T3 et + Je Ay By 6)
with NCP conditions:
0<A, LJ%V4e >0
Net, € FC(NG,)
if \7, =0 then ||\, || =0 (open)

(7N
else if A, € FC;(A", ) then ‘ Jctt’cVH = 0 (stick)

else /| \ey || = =74,V |

JthVH (slip)
for Yc = 1 ~ n. where n,t denotes the normal and the
tangential components of the contact, € is for penetration
compensation term and F'C' stands for the friction cone
set with subscript I the inside, not including the boundary.
Conditions in (7) can be relaxed as several way (e.g., penalty-
based [17], bounded linearized model [18], etc.), however
for accurate dry-frictional behavior, we have taken all the
conditions that the physical contact should have. From (6)
and (7), M. can be obtained by widely-used projected
Gauss-Seidel (PGS) method [9] and then V' can be directly
calculated from (5).

However, applying direct solve to elastic object manipula-
tion scenario is in many case intractable since we encounter
a large size matrix calculation (e.g., Delassus operator
JctA,ZlJ T for every time step while dealing with large sized
coupled contact problem (6) which takes considerable time.

IV. PARALLELIZED ITERATIVE SOLVER FOR FLEXIBLE
CABLE SIMULATION

In Sec. IV, we propose the novel subsystem-based par-
allelized iterative solver to speed up solving dynamic for-
mulation in Sec. III-B. We subdivide the whole system,
formulate the dynamics of each subsystem in parallel, and
integrate the coupling and parallelized contact solver through
iteration. Since our strategy is based on direct solve for
each subsystem, it is better in terms of accuracy than other
iteration-based methods and is less affected by the number
of iterations or time step size.

A. Generalized Contact Model

In most simulation, Coulomb friction model is widely
used for its simplicity and convexity. However, it is known
that Coulomb friction model does not fit well in polymers
which usually constitute flexible cables [19]. Therefore, in
this paper, we adopt generalized friction model:

I A, (1< mIAL Y )

for V¢ = 1 ~ n, where x, N depends on the material. While
Coulomb friction model use N =1, N for polymer usually
exists in the range 0.67 ~ 1 [20]. In this case, F'C' has non-
conical shape, which means certain schemes based on conical
shape [21], [22] are not applicable. Thus, to solve NCP in
generalized contact model, we slightly modified friction cone
projection step of PGS algorithm based on (8).

B. Subsystem Modeling

Each subsystem consists of a set of consecutive segments
as shown in Fig. 2. Since dynamic coupling exists only via
the connection between the two subsystems, the dynamics
of each i-th subsystem is given by:

AV = Bi Il Aep + 0 Ay TG At (9)

where A;, B; are the subsystem dynamic matrix, A.p, is the
coupling impulse between i-th and (i + 1)-th subsystem,
Jcpg’ is the Jacobian for coupling A.,, corresponding to 7'-
th subsystem. Here we omit notation for k-th time step for
simplification, however all the components of (9) are varies
according to the time step. Despite A;, B; are computed
based on (5), since we exclude terms relate to A, and
Aot in B;, each subsystem dynamic matrix only contain its
‘internal’ properties. Therefore, we can obtain all of the
component (i.e., A;,B;,Jepi,Jct;) independently for each
subsystem.

At the same time, we can use coupling action between
adjacent subsystem from (4) which can be written as

Nen, = ~Keptap, = 5 Kepogs Vi = T Vi) T (10)

where K., = K. € R’ is the coupling gain matrix. By
substituting (9) into (10) for all coupling indices, linear
relation between the entire coupling impulse M., and the
entire contact impulse A.; can be obtained:

Shep = —CAet + U
)‘CP = [)‘Cpl; e ;)‘C;Dnﬁfl] € Rﬁ(ns_l)
)\Ct - [Act“; e ; Actin,c] e Rgnc

(1)
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Fig. 2: Discretization structure of the cable: subsystems (i-index)
and segments (j-index).

Pi+1, Rj1

Subsystem i+1

where n, is the number of subsystem, ic is the node
index for c-th contact and S € RO6(=—1)x6(n:—1) ¢ ¢
RO(s=1)x3ne 7 ¢ R6(ms=1) j5 derived from substitution.
Here, detailed derivation is omitted for the page limit but
the form of S can be expressed as follow:

St St
g |9
S
Sraz Snet (12)

. 2 1 -1 4T -1 T
Sl@ _ TikKe + JcpfAz‘ Jcp;i + Jcpj“ Ai+1Jcp::+1
SZ = JcpiAz_l‘]g;)’

If there is no contact, coupling impulse can be obtained
by solving A\, = —S~'U which is similar to Schur-
complement based scheme [23] but with a primal-based
formulation [24] for each subsystem. When we take a large
number of subsystem, linear solve of .S becomes heavy and in
multi-contact situation, solving NCP (7) cannot be basically
decoupled with (11). Due to this difficulty, A, and A
cannot be solved at the same time and all contact situations
must be resolved at once (i.e., not parallelizable).

C. Parallel Contact Solver

To embrace multi-contact situation in our solver, we utilize
iteration scheme. We first modify (11) as

(Sa+ S)AL, = =S At —CAL, +U (13)

where \' denotes impulse at the [-th iteration step, Sg, S;, Sy,
is the block diagonal, the strictly block lower triangular, and
the strictly block upper triangular part of the S. Solving (13)
is one step block Gauss-Seidel iteration which only need
inversion of S! which can be easily computed in parallel.
Also, to obtain A\, before solving (13), we also revise (9)
for each subsystem as

Az‘z =B; + Jg;); Alc;} + Jg;);il)\lc;}il + Jg; )\lfl

i’hct;

(14)

Projecting (14) to contact space, contact formulation of each
subsystem can be written as
¥ -1 4T -1 —1
JetiVi = Jet, A; Jcti)‘f:ti + f(Alcpi Al )

—177°¢cp;

15)
proj. to NCP conditions as (7)

where f is the simplified notation of linear mapping. Here,
since we know )\lcgl from previous iteration step, (15) of

each i-th subsystem is completely decoupled which means
parallel computing can be applied. For each subsystem,
single iteration of PGS algorithm described in Sec. IV-A
which updates )\lczil to /\lctq_ is performed in parallel. Although
single iteration is used here, we find that reliable contact
behavior can be obtained because it is repeated continuously
in the [-loop (i.e., contact solver loop). After obtaining )\lcti,
AL, can be updated through (13).

In the strategy as above, matrix used in the [-loop (i.e.,
sub-size Delassus operator Jct,iAi_ljg;i, inverse of Sf) can
be pre-computed in the outside of the loop. Therefore, the
process contained in the inner loop becomes very light.
Also we use warm start that initialize A.p,, Ac; as previous
simulation step value. This scheme is similar to [25] called
iterative constraint anticipation (ICA) that it block splits Ay
and iterates between Vj; and \.;. However, our algorithm
does not have to calculate full size of A, which demands
large size matrix multiplication and uses A, rather than Vj,_;
for iteration, so the handling size is smaller.

Despite the [-loop process adopt Gauss-Seidel method,
convergence of the algorithm cannot easily guaranteed since
it is unified with PGS iteration which induces non-linear
relation between A, and A.. In order to achieve benefit
in terms of convergence, we proceeded following PGS post-
regulation:

if (| C(\L — A7) || €a') then
do /\lct = /\lct_l

where £ > 0,0 < a < 1 is the hyperparameter which bounds
deviation of A\.; from previous step. By restricting bouncing
deviation of A, this post-regulation ensures ‘noise’ in the
Gauss-Seidel iteration to be bounded. Although (16) is a
condition that cannot be easily interpreted physically, we
confirm through simulation results that it is sufficiently valid.
Also based on this, convergence of ), in our [-loop process
can be shown as Theorem 1. Pseudo-code of the whole
algorithm is specified in Algorithm 1.

(16)

Lemma 1 || (S;+ S;)71S, ||< 1 can be ensured by taking
small enough Tj,.

Proof: Considering (12), we can write as

2 _ / B ,
S = ?[Ke N+Su=F1+5y
k

where Sq; = Sq+S;, F = %[Kp] since K, is invertible and
S’ is the residual part of the matrix which is independent

of T}. Then such inequality can be hold:
1Sa" S ll <1 (F™ 4+ Sa) ™" I Sl
<IF NI+ FSg) ™ Il S |

Since S,, is also independent of T}, by reducing the value
of T}, we can only reduce || F' || directly. Applying Lemma
2.3.3. in [26], we can get

. LE TSl
FE NI T+ FSg) ™ Il Su lI< ;
“ L=l F Il Sg |

and by reducing || F' ||, right side of the inequality can be
less than 1, which showing that given lemma hold. l



Algorithm 1 Subsystem-based Parallelized Iterative Solver

1: while simulation loop do

2 for each subsystem i do in parallel
3 Compute A;, A;l, By, Jep,

4 Collision detection with J,

5: end for

6 Compute S, C, U to construct (11)
7 for each subsystem ¢ do in parallel
8 Compute JctiAi_ng;i

o: Compute inverse of S?

10: end for

11: Initialize Acp,A\ct as previous simul. loop value
12: while contact loop do

13: l+<1+1

14: for each subsystem ¢ do in parallel

15: Compute \., from single PGS iter (15)
16: end for

17: PGS post-regulation using (16)

18: Block Gauss-Seidel update using (13)

19: if || AL, — A1 ||< € orl> lng, then

20: break

21: end if

22: end while

23: Update each subsystem using (9) in parallel

24: end while

Theorem 1 Convergence of A, in Algorithm 1 can be
ensured by taking small enough T,

Proof: Let us define as || S;;'S, ||=~. By Lemma 1,y < 1
holds for T}. Then from (13),(16), we can get

A=) =851 8u(Ag ! = A = SatCO% = A ) |
<A+ €

where A, =|| AL, — Aé;l Il & = S,* || €& By repeating
such inequality, following is derived:

-1
Al < ’Yl_lAl + é—/a(z ai,yl—i—l)

=0

By taking [ that satisfies a,y < 8 < 1, we can finally get
Ay <A 7TAL + 1B

which directly shows A; converges to 0 as [ — oo. W
Although sufficiently small T} is demanded for our proof,
we observe that convergence is still possible even for large
T (~ 0.02s) for typical simulation.

D. Additional Details and Expansions

1) Collision detection: Since we model each segment
in a cylindrical shape, the environment and self-collision
composed of primitive shapes can be easily implemented
with some hashing algorithms. Contact with more complex
figures (e.g., mesh) has not been implemented yet, but we
believe it can be included without difficulty using algorithm
like [27].

2) Self-collision: In the case of self-collision (e.g., knot-
tying), knowing all the coupling impulse between subsystems
does not imply that all subsystem dynamics can be calculated
in a decoupled state. To deal with this, we utilize an adaptive
subsystem division scheme that binds the segments where
self-contact occurred to the same subsystem.

3) Coupling with manipulator dynamics: Manipulator dy-
namics expressed in generalized coordinates can be con-
veniently included in our framework by considering the
manipulator dynamics as a single subsystem with Jacobian
mapping of joint-to-Cartesian coordinate. In this paper, we
use the passivity-based Lagrangian dynamics integration
method proposed in [8].

4) Non-linearized dynamics: Although we have devel-
oped expressions on PMI based linearized dynamics so far,
our method can also be used for other projected Newton
type dynamics [28] integration. By constructing multiple lin-
earized dynamics (i.e., Newton iterations) at each time step,
simulation stability and accuracy can be further increased.

V. SIMULATION AND EXPERIMENT
A. Parameter Identification

To identify the physical parameters (i.e., Young’s modulus
E, Poisson’s ratio v, frictional attribute x and V), we develop
simple, efficient way which is based on Capstan equation
[19]. The equation describes relation between the friction
and the tension of the cable and can be written as

T = Tpet?

where Ty, T is the tension applied in one end and the
minimum tension that must be applied to the other end
to move the cable, u is the friction coefficient, 6 is the
winded angle. However, since this relation is derived from
the assumption that the cable does not extend, we adopt
modified Capstan equation (MCE) proposed in [19] which
considers extension with nonlinear friction (8) and represent
as ordinary differential equation (ODE) form. For full equa-
tion and derivation, see [19].

We conduct experiment to collect (Tp,T") for various 6, Tj
conditions: put a mass on one end of the cable, wind it around
a cylinder, and gradually increase the tension of the other end
using robot arm (FRANKA EMIKA Panda) impedance con-
trol [29] while tension is measured using force/torque (F/T)
sensor (ATI Gamma). After collecting sufficient number of
data, the parameters that best match the theoretical results
are calculated. Here, we use MATLAB ode45 solver to solve
MCE numerically and conduct non-linear optimization using
MATLAB fmincon solver. As a result, we obtain the values
as F = 4.462 MPa, v = 0.5012,x = 1.296, N = 0.7616.

B. Simulation

Using simulation scheme described above, we simulate ca-
ble winding operation around cylinder using robot arm. The
task is designed to satisfy the constant desired pitch while
extending the cable. The parameters obtained from Sec. V-A
are used, and radius, length of the cable is 0.002m, 0.4m. We
also use 40 ~ 160 as segments number, 8 ~ 20 as subsystem
number, 10ms as time step and 100 as max iteration number.
We use Intel Core i5-7500 CPU 3.40GHz (Quad-Core),
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Fig. 3: Solver performance comparison in simulation. Computation
speed over simulation time flows(upper) and average computation
time per step along discretization number(lower).

(a) 80 segments discretization

[ | Avg. time(ms) | Avg. iter | Max. iter |
Solver 1 38.515 - -
Solver 2 3.4606 60.550 2107 / 5500
Solver 3 2.5928 31.762 0/ 5500

(b) 160 segments discretization

[ | Avg. time(ms) | Avg. iter | Max. iter |
Solver 1 189.99 - -
Solver 2 7.2411 71.2535 3151 / 5500
Solver 3 4.6810 30.5344 0 /5500

TABLE I: Solver Performance Comparison

OpenGL as rendering tool, C++ Eigen as matrix computation
library and C++ OpenMP as parallelization library.

We compare three solvers: 1) classical direct solver
in Sec. III-C (Solverl) 2) our solver without PGS post-
regulation (Solver2) 3) our solver with PGS post-regulation
(Solver3) and the result is depicted in Fig. 3 and Table 1. The
results clearly shows that our method is superior in compu-
tation efficiency compared to the direct solver. Computation
time is able to speed up to 20 ~ 40 times and this per-
formance gap increases along discretization number which
means our algorithm has preferable scalability. Note that
even for 160 segments (960 DOF), our simulation scheme
can be performed in real-time. It is also demonstrated that
our post-regulation strategy affects to the decrease in iteration
number and computation time, while ensuring convergence
so that the maximum number of iterations is not reached. We
also find that the decrease in speed as increasing number of
contacts is smaller in our solver than in direct solver.

C. Comparison with Experiment

To verify the consistency of our simulation with reality,
experiment on the same task in the real environment is
performed. For performance evaluation, we measure the
force applied to the end effector of the robot arm during
winding operation task using F/T sensor. Here, we utilize
admittance control [29] with very high gain and use velocity
control as low level control for exact tracking of the desired
trajectory. Experiment snapshot is depicted in Fig. 1. To
compare with our solver, we also implement the extended
position based dynamics (XPBD) solver [30] with material

End Effector Force

F(N)

4 . . . . . s .
= 2r P /W\
Z 0 —— e
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4 L L

FL(N)

Time(s)
Fig. 4: End effector force comparison while winding operation.

Fig. 5 Conﬁguratioﬁ after conducting winding process. Experiment,
Solver3, and the XPBD solver from left to right.

parameters which is widely used in the deformable object
simulation in the field of graphics.

As a result shown in Fig. 4 and Fig. 5, our simulation
result fits well with the experimental force result (RMS error
z : 0.3519N, y : 0.3981N, z : 0.2465N) and also tracks
desired pitch well, while the XPBD result shows unreliable
performance as the cable is not extended but drooped. This
is because 1) the XPBD’s iteration does not sufficiently
converge along strong gain to follow the desired trajectory
(even with 100 iterations for all steps); 2) loss of accuracy
by modeling contact with constraint potential. However, it is
validated that iteration and regulation schemes applied in our
subsystem-based parallel solver well maintain the physical
conditions.

This implies that simulator for visually plausible results do
not always correspond to physical accuracy and suggest that
methods with both speed and accuracy, like our solver, are
important in areas such as robot manipulation that require
physical correct behavior.

VI. CONCLUSION

In this paper, we present a novel real-time simulation
method of long flexible cable manipulation with physical
accuracy. We model the cable as articulated rigid link seg-
ments, each with complementarity-based contact model and
inter-segment compliant coupling based on analytical theory.
To accelerate the simulation of this large size, complicated
model, we subdivide the entire system and solve them in par-
allel using our novel Gauss-Seidel based iteration for inter-
subsystem consistency and post-regulation for convergence
speed up. Both simulation and experiment is performed for
verification of the proposed algorithm. Some future works
can be discussed as follow: 1) expansion to general de-
formable object; 2) manipulation performance improvement
based on reinforcement learning in simulation environment.
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